58
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Murine CD5+, CD8+ Normal Fetal Liver Cells Enhance an Immune Response: Benzo(α) Pyrene-Exposed CD5+ Fetal Liver Cells are Inhibitors

Pages 897-913 | Published online: 17 Nov 2008

REFERENCES

  • A. Globerson, R. M. Zinkernagel, and T. Umiel. (1975). Immunosuppression by embryonic Liver cells. Transplant. 20:480–485.
  • A. del Rey, A. H. Besedovsky, and H. Sorkin. (1980). Mouse fetal liver cells manifest antigen-specific suppressor activity. Cell. Immunol. 56:217.
  • S. Muroaka, and R. Miller. (1983). GCells in murine fetal liver and lymphoid colonies grown from fetal liver can suppress generation of cytotoxic T lymphocytes directed against their self antigens. J. Immunol. 131:45.
  • P. Urso, and R. A. Johnson. (1987). Early changes in T lymphocytes and subsets of mouse progeny defective as adults in controlling growth of a syngeneic tumor after in utero insult with benzo(α)pyrene. Immunopharmacology 14:1.
  • P. Urso. (1995). Murine fetal liver augments proliferation in an allogeneic mixed lymphocyte culture: Benzo(α)pyrene reduces augmentation. Immunopharm. Immunotox. 17:181.
  • R. Haars, P. Conradt, I. Miltner, and H. Wagner. (1991). A novel form of CD4 (L3T4) mRNA in the murine fetal liver results in cell-surface expression of the L3T4 antigen. Scand. J. Immunol. 34:253.
  • R. E. Mebius, T. Miyamoto, J. Christensen, J. Domen, T. Cupedo, I. L. Weissman, and K. Akashi. (2001). The fetal liver counterpart of adult common lymphoid progenitor gives rise to all lymphoid lineages, CD45+CD4+CD3- cells as well as macrophages. J. Immunol. 66:6593.
  • S. Sagara, K. Sugaya, Y. Tokoro, S. Tanaka, H. Takano, H. Kodama, H. Nagauchi, and Y. Takahama. (1997). B220 expression by T lymphoid progenitor cells in mouse fetal liver. J. Immunol. 158:666.
  • S. D. Holladay, and B. J. Smith. (1994). Fetal hematopoietic alterations after maternal exposure to benz(α)pyrene: A cytometric evaluation. J. Toxicol. Environ. Health. 42:259.
  • F. Douagi, J. Colucci, O. DiSanto, and M. A. Cuomano. (2002). Identification of the earliest rethymic bipotent T/NK progenitor in mouse liver. Blood. 99:463.
  • C. Penit, and F. Vasseur. (1989). Cell proliferation in the fetal and early postnatal mouse thymus. J. Immunol. 142:3369. 1989
  • E. Mertsching, A. I. Wurster, C. Katayama, J. Esko, F. Ramsdell, J. D. Marth, and S. M. Hedrick. (2002). A mouse strain active for αβ vs γδ T- cell lineage. Int. Immunol. 14:1039.
  • D. Vremec, J. Pooley, H. Hochrein, L. Wu, and K. Shortman. (2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164:2978.
  • K. Takahashi, K. Miyakawa, A. A. Wynn, K. Nakayama, Y. Y. Myint, M. Naito, L. D. Shultz, A. Tominaga, and K. Takatsu. (1998). Effects of granulocyte/macrophage colony-stimulating factor on the development and differentiation of CD5-positive macrophages and their potential derivation from a CD5-positive B-cell lineage in mice. Am. J. Pathol. 152:445.
  • R. R. Hardy, and K. Hayakawa. (1991). A developmental switch in B lymphopoiesis. Proc. Natl. Acad. Sci. U.S.A. 88:11550.
  • A. N. Makori, A. F. Tarantal, F. X. Lu, T. R. Marthas, M. B. Chesney, A. G. Hendricks, and C. Miller. (2003). Functional and morphological development of lymphoid immune regulatory and effector function in rhesus monkey secreting cells, immunoglobulin secreting cells, and CD5 appear early in fetal development. Clin. Diagn. Lab. Immunol. 10:140.
  • E. Payer, R. Kutil, and G. Stingl. (1994). CD5-dendritic epidermal T cells are derived from CD5+ precursor cells. Eur. J. Immunol. 24:1317. 1994
  • H. S. Azzam, A. Grinberg, H. Lui, E. Shen, H. Shores, and P. E. Love. (1998). CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188:2301.
  • G. Bikal, F. H. Lynd, A. A. Aruffo, J. A. Ledbetter, and S. Bondada. (1998). A role of CD5+ in cognate interactions between T and B cells, and identification of a novel ligand for CD5+. Int. Immunol. 10:1125–1131.
  • P. Youinou, C. Jamin, J-O. Pers, C. Berthou, A. Saraux, and Y. Renaudineau. (2005). B lymphocytes are required for development and treatment of autoimmune disease. Ann. N.Y. Acad. Sci. 1050:19.
  • J. W. Tung, S. S. Kunnavatana, L. A. Herzenberg, and L. A. Herzenberg. (2001). The regulation of CD5 expression in murine T cells. BMC Molec. Biol. 2:15.
  • T. Kina, S. Nishikawa, and Y. Katsura. (1982). T-cell regulation of pokeweed-mitogen- induced polyclonal immunoglobulin production in mice. II. Mechanism of the induction of suppressor cells. Immunol. 46:583.
  • F. Y. Liew, and S. M. Russell. (1980). Delayed type hypersensitivity to influenza virus. Induction of antigen-specific suppressor T cells for delayed-type hypersensitivity to hemagglutinin during influenza virus infection in mice. J. Exp. Med. 151:799.
  • W. Luo, H. Van De Velde, I. Von Hoegen, J. R. Parnes, and K. Theilmans. (1992). Ly-1 (CD5), a member glycoprotein of mouse T lymphocytes and a subset of B cells, is a natural ligand of the B cell surface protein Lyb-2 (CD72). J. Immunol. 148:1630.
  • T. A. Thompson, C. H. Potter, I. F. C. McKenzie, and C. R. Parish. (1980). The surface phenotype of s suppressor cell of delayed-type hypersensitivity in the mouse. Immunol. 40:87.
  • M. Raab, M. Yamamoto, and C. E. Rudd. (1994). The T cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Mol. Cell. Biol. 14:2862.
  • A. D. Davies, S. C. Ley, and M. J. Crumpton. (1992). CD5 is phosphorylated on tyrosine after stimulation of the T-cell antigen receptor complex. Proc. Natl. Acad. Sci. U.S.A. 89:6368.
  • N. Watanabe, S. Kojima, F-W. Shen, and Z. Ovary. (1977). Expression of IgE antibody production in SJL mice. Expression of Ly-1 antigen on helper and non-specific suppressor cells. J. Immunol. 118:485.
  • M. O. Muench, M. G. Roncarlo, and R. Namikawa. (1997). Phenotypic and functional evidence for the expression of CD4 by hematopoietic stem cells isolated from human fetal liver. Blood. 89:1364.
  • M. Marchant, V. Appay, M. van der Sande, N. Dulphy, C. Liesnard, M. Kidd, S. Kaye, O. Ojuola, G. M. A. Gillespie, A. L. Vargas Cuero, V. Cerundolo, M. Callan, K. J. McAdam, P. W. S. L. Rowland-Jones, C. Donner, A. J. McMichael, and W. Whittle. (2003). Mature CD8+ T lymphocyte response to viral infection during fetal life. J. Clin. Invest. 111:1747.
  • G. T. Belz, J. D. Altman, and P. C. Doherty. (1998). Characteristics of virus-specific CD8+ cells in the liver during the control and resolution phases of influenza pneumonia. Immunol. 95:13812.
  • L. E. Shields, L. Gaur, P. Dello, J. Potter, A. Sieverkropp, and R. G. Andrews. (2004). Fetal immune suppression as adjunctive therapy for in utero hematopoietic stem cell transplantation in nonhuman primates. Stem Cells. 22:759.
  • A. B. Peck, and F. H. Bach. (1973). A miniaturized mouse mixed leukocyte culture in serum-free and mouse serum supplemented media. J. Immunol. Meth. 3:147.
  • P. Urso, N. Gengozian, L. R. Rossi, and R. A. Johnson. (1986). Suppression of the plaque forming cell response and the mixed lymphocyte response in vitro by benzo(α)pyrene. J. Immunopharm. Immunotox. 8:223.
  • M. E. Lee, and P. Urso. (2007). Suppression of T lymphocyte proliferation to antigenic and mitogenic stimuli by benzo(α)pyrene and 2-aminofluorene metabolites. Immunopharm. Immunotox. 29:1.
  • A. M. Thornton, and E. M. Shevach. (1998). CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin-2 production. J. Exp. Med. 188:287.
  • S. K. Singhal, and A. K. Duwe. Suppressor B cells Suppressor cells in immunity: An International Symposium. S. K. Singhal, and N. R. St. C. Sinclair. The University of Western Toronto Press, TorontoOntario, (1975).
  • V. S. Rao, J. A. Bennett, F. W. Shen, R. K. Gershon, and M. S. Mitchell. (1980). Antigen:antibody complexes generate Lyt 1 inducers of suppressor cells. J. Immunol. 125:63.
  • N. Koide, T. Sugiyama, I. Mori, M. M. Mu, T. Hamano, T. Yoshida, and T. Yokochi. (2002). Change of mouse CD5+ B1 cells to a macrophage-like morphology induced by gamma interferon and inhibited by interleukin-4. Clin. Diag. Lab. Immunol. 9:1169.
  • J. A. Bennett, J. C. Marsh, and M. S. Mitchell. Suppressor macrophages: Their induction, characterization, and regulation. in: mediators of cellular immunity in cancer by immune modifiersM. A. Chirigos, and et al, and Raven Press, New York, (1981) .
  • T. Kizaki, T. Ookawara, T. Izawa, N. Nagasawa, S. Haga, Z. Radiak, and H. Ohno. (1997). Relationship between cold tolerance and generation of suppressor macrophages during acute cold stress. J. Appl. Physiol. 83:1116–1122.
  • S. Nabeshima, M. Numoyo, G. Matsuzaki, K. Kishihara, H. Taniguchi, S.-I. Yoshida, and K. Nomoto. (1999). T-cell hyporesponsiveness induced by activated macrophages through nitric oxide production in mice infected with Mycobacterium tuberculosis. Infect. Immun. 67:3221.
  • R. T. Rahim, J. J. MeisslerJr., M. W. Adler, and T. K. Eisenstein. (2005). Splenic macrophages and B cells mediate immunosuppression following abrupt withdrawal from morphine. J. Leuk. Biol. 78:1185.
  • P. Urso, Y. G. Wirsiy, W. Zhang, and P. J. Ans Moolenaar-Wirsiy. (2008). Alterations in CD4+, CD8+, Vagamma3, Vgammadelta, and for Valphabeta T-cell expression in lymphoid tissue of progeny after utero exposure to benzo (a) pyrene. J. Immunotox. In Press
  • H. Folch, M. Yoshinaga, and B. H. Wasksman. (1973). Regulation of lymphocyte responses in vitro. III. Inhibition by adherent cells of the T-lymphocyte response to phytohemagglutinin. J. Immunol. 110:835.
  • J. van Grevenynghe, L. Spaerfel, M. Le Vee, D. Gilot, B. Drenou, R. Fauchet, and O. Fardel. (2004). Cytochrome P450-dependent toxicity of environmental polycyclic aromatic hydrocarbons towards human macrophages. Biochem. Biophys. Res. Commu. 317:708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.