177
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Bacterial Polysaccharides with Zwitterionic Charge Motifs: Toll-Like Receptor 2 Agonists,T Cell Antigens, or Both?

&
Pages 761-770 | Published online: 20 Oct 2008

REFERENCES

  • B.A. Cobb, and D.L. Kasper. 2005. Coming of age: Carbohydrates and immunity. Eur. J. Immunol. 35 (2):352–356.
  • M. Brigl, and M.B. Brenner. 2004. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol. 22:817–890.
  • Z. Zeng, A.R. Castano, B.W. Segelke, E.A. Stura, P.A. Peterson, and I.A. Wilson. 1997. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277 (5324):339–345.
  • A.O. Tzianabos, A.B. Onderdonk, B. Rosner, R.L. Cisneros, and D.L. Kasper. 1993. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262 (5132):416–419.
  • D.R. Chung, D.L. Kasper, R.J. Panzo, T. Chitnis, M.J. Grusby, M.H. Sayegh, and A.O. Tzianabos. 2003. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J. Immunol. 170 (4):1958–1963.
  • A.O. Tzianabos, and D.L. Kasper. 2002. Role of T cells in abscess formation. Curr. Opin. Microbiol. 5 (1):92–96.
  • T.L. Stephen, M. Niemeyer, A.O. Tzianabos, M. Kroenke, D.L. Kasper, and W.M. Kalka-Moll. 2005. Effect of B7-2 and CD40 signals from activated antigen-presenting cells on the ability of zwitterionic polysaccharides to induce T-Cell stimulation. Infect. Immun. 73 (4):2184–2189.
  • F. Stingele, B. Corthesy, N. Kusy, S.A. Porcelli, D.L. Kasper, and A.O. Tzianabos. 2004. Zwitterionic polysaccharides stimulate T cells with no preferential V beta usage and promote anergy, resulting in protection against experimental abscess formation. J. Immunol. 172 (3):1483–1490.
  • W.M. Kalka-Moll, A.O. Tzianabos, P.W. Bryant, M. Niemeyer, H.L. Ploegh, and D.L. Kasper. 2002. Zwitterionic polysaccharides stimulate T cells by MHC class IIdependent interactions. J. Immunol. 169 (11):6149–6153.
  • A.O. Tzianabos, J.Y. Wang, and J.C. Lee. 2001. Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc. Natl. Acad. Sci. U. S. A. 98 (16):9365–9370.
  • A.O. Tzianabos, A. Chandraker, W. Kalka-Moll, F. Stingele, V.M. Dong, R.W. Finberg, R. Peach, and M.H. Sayegh. 2000. Bacterial pathogens induce abscess formation by CD4(+) T-cell activation via the CD28-B7-2 costimulatory pathway. Infect. Immun. 68 (12):6650–6655.
  • W.M. Kalka-Moll, A.O. Tzianabos, Y. Wang, V.J. Carey, R.W. Finberg, A.B. Onderdonk, and D.L. Kasper. 2000. Effect of molecular size on the ability of zwitterionic polysaccharides to stimulate cellular immunity. J. Immunol. 164 (2):719–724.
  • J.O. Brubaker, Q. Li, A.O. Tzianabos, D.L. Kasper, and R.W. Finberg. 1999. Mitogenic activity of purified capsular polysaccharide A from Bacteroides fragilis: Differential stimulatory effect on mouse and rat lymphocytes in vitro. J. Immunol. 162 (4):2235–2242.
  • S. Gallorini, F. Berti, P. Parente, R. Baronio, S. Aprea, U. D'Oro, M. Pizza, J.L. Telford, and A. Wack. 2007. Introduction of zwitterionic motifs into bacterial polysaccharides generates TLR2 agonists able to activate APCs. J. Immunol. 179 (12):8208–8215.
  • B.A. Cobb, Q. Wang, A.O. Tzianabos, and D.L. Kasper. 2004. Polysaccharide processing and presentation by the MHCII pathway. Cell 117 (5):677–687.
  • C. Watts. 2004. Class II MHC: sweetening the peptide only diet?. Cell 117 (5):558–559.
  • E.J. Sundberg, L. Deng, and R.A. Mariuzza. 2007. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 19 (4):262–271.
  • Q. Wang, R.M. McLoughlin, B.A. Cobb, M. Charrel-Dennis, K.J. Zaleski, D. Golenbock, A.O. Tzianabos, and D.L. Kasper. 2006. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J. Exp. Med. 203 (13):2853–2863.
  • T. Querec, S. Bennouna, S. Alkan, Y. Laouar, K. Gorden, R. Flavell, S. Akira, R. Ahmed, and B. Pulendran. 2006. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203 (2):413–424.
  • D.C. Jackson, Y.F. Lau, T. Le, A. Suhrbier, G. Deliyannis, C. Cheers, C. Smith, W. Zeng, and L. E. Brown. 2004. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl. Acad. Sci. U. S. A. 101 (43):15440–15445.
  • G. Sen, A.Q. Khan, Q. Chen, and C.M. Snapper. 2005. In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands. J. Immunol. 175 (5):3084–3091.
  • M.S. Jin, S.E. Kim, J.Y. Heo, M.E. Lee, H.M. Kim, S.G. Paik, H. Lee, and J.O. Lee. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130 (6):1071–1082.
  • G. Meng, A. Grabiec, M. Vallon, B. Ebe, S. Hampel, W. Bessler, H. Wagner, and C.J. Kirschning. 2003. Cellular recognition of tri-/di-palmitoylated peptides is independent from a domain encompassing the N-terminal seven leucine-rich repeat (LRR)/LRR-like motifs of TLR2. J. Biol. Chem. 278 (41):39822–39829.
  • H. Mitsuzawa, I. Wada, H. Sano, D. Iwaki, S. Murakami, T. Himi, N. Matsushima, and Y. Kuroki. 2001. Extracellular Toll-like receptor 2 region containing Ser40-Ile64 but not Cys30-Ser39 is critical for the recognition of Staphylococcus aureus peptidoglycan. J. Biol. Chem. 276 (44):41350–41356.
  • H.S. Seo, R.T. Cartee, D.G. Pritchard, and M.H. Nahm. 2008. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J. Bacteriol. 190 (7):2379–2387.
  • P. Henneke, S. Morath, S. Uematsu, S. Weichert, M. Pfitzenmaier, O. Takeuchi, A. Muller, C. Poyart, S. Akira, R. Berner, G. Teti, A. Geyer, T. Hartung, P. Trieu-Cuot, D.L. Kasper, and D.T. Golenbock. 2005. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J. Immunol. 174 (10):6449–6455.
  • U. Buwitt-Beckmann, H. Heine, K.H. Wiesmuller, G. Jung, R. Brock, S. Akira, and A.J. Ulmer. 2005. Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur. J. Immunol. 35 (1):282–289.
  • J.E. Wang, P.F. Jorgensen, M. Almlof, C. Thiemermann, S.J. Foster, A.O. Aasen, and R. Solberg. 2000. Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect. Immun. 68 (7):3965–3970.
  • T. Mattern, G. Girroleit, H.D. Flad, E.T. Rietschel, and A.J. Ulmer. 1999. CD34(+) hematopoietic stem cells exert accessory function in lipopolysaccharide-induced T cell stimulation and CD80 expression on monocytes. J. Exp. Med. 189 (4):693–700.
  • D. Kabelitz. 2007. Expression and function of Toll-like receptors in T lymphocytes. Curr. Opin. Immunol. 19 (1):39–45.
  • M. Komai-Koma, L. Jones, G.S. Ogg, D. Xu, and F.Y. Liew. 2004. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc. Natl. Acad. Sci. U. S. A. 101 (9):3029–3034.
  • H. MacLeod, and L.M. Wetzler. 2007. T cell activation by TLRs: a role for TLRs in the adaptive immune response. Sci. S.T.K.E. 402:e48.
  • A. Cottalorda, C. Verschelde, A. Marcais, M. Tomkowiak, P. Musette, S. Uematsu, S. Akira, J. Marvel, and N. Bonnefoy-Berard. 2006. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur. J. Immunol. 36 (7):1684–1693.
  • T. Imanishi, H. Hara, S. Suzuki, N. Suzuki, S. Akira, and T. Saito. 2007. Cutting edge: TLR2 directly triggers Th1 effector functions. J. Immunol. 178 (11):6715–6719.
  • R.P. Sutmuller, M.H. den Brok, M. Kramer, E.J. Bennink, L.W. Toonen, B.J. Kullberg, L.A. Joosten, S. Akira, M.G. Netea, and G.J. Adema. 2006. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116 (2):485–494.
  • H. Liu, M. Komai-Koma, D. Xu, and F.Y. Liew. 2006. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc. Natl. Acad. Sci. U. S. A. 103 (18):7048–7053.
  • M. Fukata, K. Breglio, A. Chen, A.S. Vamadevan, T. Goo, D. Hsu, D. Conduah, R. Xu, and M.T. Abreu. 2008. The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J. Immunol. 180 (3):1886–1894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.