186
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The protective effect of teprenone in TNBS-induced ulcerative colitis rats by modulating the gut microbiota and reducing inflammatory response

, , , , , , & show all
Pages 255-263 | Received 29 Jun 2023, Accepted 15 Jan 2024, Published online: 05 Feb 2024

References

  • Mak WY, Zhao M, Ng SC, et al. The epidemiology of inflammatory bowel disease: east meets west. J Gastroenterol Hepatol. 2020;35(3):380–389. doi: 10.1111/jgh.14872.
  • Shawki S, Ashburn J, Signs SA, et al. Colon cancer: inflammation-associated cancer. Surg Oncol Clin N Am. 2018;27(2):269–287. doi: 10.1016/j.soc.2017.11.003.
  • Saez A, Herrero-Fernandez B, Gomez-Bris R, et al. Pathophysiology of inflammatory bowel disease: innate immune system. Int J Mol Sci. 2023;24(2):1526. doi: 10.3390/ijms24021526.
  • Qu Y, Li X, Xu F, et al. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis. Front Immunol. 2021;12:679897. doi: 10.3389/fimmu.2021.679897.
  • Liu Y, Yang M, Tang L, et al. TLR4 regulates RORγt+ regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila. Microbiome. 2022;10(1):98. doi: 10.1186/s40168-022-01296-x.
  • Dejban P, Nikravangolsefid N, Chamanara M, et al. The role of medicinal products in the treatment of inflammatory bowel diseases (IBD) through inhibition of TLR4/NF-kappaB pathway. Phytother Res. 2021;35(2):835–845. doi: 10.1002/ptr.6866.
  • Ruiz E, Penrose HM, Heller S, et al. Bacterial TLR4 and NOD2 signaling linked to reduced mitochondrial energy function in active inflammatory bowel disease. Gut Microbes. 2020;11(3):350–363. doi: 10.1080/19490976.2019.1611152.
  • Shi YJ, Gong HF, Zhao QQ, et al. Critical role of toll-like receptor 4 (TLR4) in dextran sulfate sodium (DSS)-induced intestinal injury and repair. Toxicol Lett. 2019;315:23–30. doi: 10.1016/j.toxlet.2019.08.012.
  • Wang Y, Wang W, Yang H, et al. Intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of toll-like receptor 4 signaling. Free Radic Biol Med. 2019;131:237–242. doi: 10.1016/j.freeradbiomed.2018.11.037.
  • Chen YX, Zhang XQ, Yu CG, et al. Artesunate exerts protective effects against ulcerative colitis via suppressing toll-like receptor 4 and its downstream nuclear factor-κB signaling pathways. Mol Med Rep. 2019;20(2):1321–1332. doi: 10.3892/mmr.2019.10345.
  • Bing X, Xuelei L, Wanwei D, et al. EGCG maintains Th1/Th2 balance and mitigates ulcerative colitis induced by dextran sulfate sodium through TLR4/MyD88/NF-κB signaling pathway in rats. Can J Gastroenterol Hepatol. 2017;2017:3057268–3057269. doi: 10.1155/2017/3057268.
  • Rafa H, Benkhelifa S, AitYounes S, et al. All-Trans retinoic acid modulates TLR4/NF-κB signaling pathway targeting TNF-α and nitric oxide synthase 2 expression in colonic mucosa during ulcerative colitis and colitis associated cancer. Mediators Inflamm. 2017;2017:7353252–7353216. doi: 10.1155/2017/7353252.
  • Li Y, Yang S, Lun J, et al. Inhibitory effects of the Lactobacillus rhamnosus GG effector protein HM0539 on inflammatory response through the TLR4/MyD88/NF-кB axis. Front Immunol. 2020;11:551449. doi: 10.3389/fimmu.2020.551449.
  • Chen GL, Zhang Y, Wang WY, et al. Partners of patients with ulcerative colitis exhibit a biologically relevant dysbiosis in fecal microbial metacommunities. World J Gastroenterol. 2017;23(25):4624–4631. doi: 10.3748/wjg.v23.i25.4624.
  • Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–1283. doi: 10.1136/gutjnl-2013-304833.
  • Zhao C, Wang J, Xiao Q. Efficacy of teprenone for prevention of NSAID-Induced gastrointestinal injury: a systematic review and Meta-Analysis. Front Med (Lausanne). 2021;8:647494. doi: 10.3389/fmed.2021.647494.
  • Sun Y, Dong H, Zhan A, et al. Protection of teprenone against hypoxia and reoxygenation stress in stomach and intestine of Lateolabrax maculatus. Fish Physiol Biochem. 2020;46(2):575–584. doi: 10.1007/s10695-019-00732-4.
  • Esmaeili Z, Niaz Q, Saffari PM, et al. Evaluation of the effect of heat shock protein 70 targeted drugs on cirrhotic cardiomyopathy in biliary cirrhotic rats. Life Sci. 2021;273:119261. doi: 10.1016/j.lfs.2021.119261.
  • Ohkawara T, Nishihira J, Takeda H, et al. Protective effect of geranylgeranylacetone on trinitrobenzene sulfonic acid-induced colitis in mice. Int J Mol Med. 2006;17(2):229–234. doi: 10.3892/ijmm.17.2.229.
  • Kim B. Western blot techniques. Methods Mol Biol. 2017;1606:133–139. doi: 10.1007/978-1-4939-6990-6_9.
  • Fischer AH, Jacobson KA, Rose J, et al. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008;2008:pdb.prot4986. doi: 10.1101/pdb.prot4986.
  • El-Baz AM, Khodir AE, Adel El-Sokkary MM, et al. The protective effect of Lactobacillus versus 5-aminosalicylic acid in ulcerative colitis model by modulation of gut microbiota and Nrf2/HO-1 pathway. Life Sci. 2020;256:117927. doi: 10.1016/j.lfs.2020.117927.
  • Lu J, Dong B, Chen A, et al. Escherichia coli promotes DSS-induced murine colitis recovery through activation of the TLR4/NF-κB signaling pathway. Mol Med Rep. 2019;19(3):2021–2028. doi: 10.3892/mmr.2019.9848.
  • Zhao J, Fan Y, Ye W, et al. The protective effect of teprenone on Aspirin-related gastric mucosal injuries. Gastroenterol Res Pract. 2019;2019:6532876–6532877. doi: 10.1155/2019/6532876.
  • Nakase H, Sato N, Mizuno N, et al. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev. 2022;21(3):103017. doi: 10.1016/j.autrev.2021.103017.
  • Ohkawara T, Nishihira J, Takeda H, et al. Geranylgeranylacetone protects mice from dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 2005;40(9):1049–1057. doi: 10.1080/00365520510023161.
  • Rashidian A, Muhammadnejad A, Dehpour AR, et al. Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway. Inflammopharmacology. 2016;24(2–3):109–118. doi: 10.1007/s10787-016-0263-6.
  • Hu LH, Liu JY, Yin JB. Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats. Kaohsiung J Med Sci. 2021;37(9):812–818. doi: 10.1002/kjm2.12400.
  • Tao JH, Duan JA, Zhang W, et al. Polysaccharides from Chrysanthemum morifolium ramat ameliorate colitis rats via regulation of the metabolic profiling and NF-κ B/TLR4 and IL-6/JAK2/STAT3 signaling pathways. Front Pharmacol. 2018;9:746. doi: 10.3389/fphar.2018.00746.
  • Duan C, Xu X, Lu X, et al. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22(1):137. doi: 10.1186/s12876-022-02208-x.
  • Lin JC, Wu JQ, Wang F, et al. QingBai decoction regulates intestinal permeability of dextran sulphate sodium-induced colitis through the modulation of notch and NF-κB signalling. Cell Prolif. 2019;52(2):e12547. doi: 10.1111/cpr.12547.
  • Kawamoto A, Nagata S, Anzai S, et al. Ubiquitin D is upregulated by synergy of notch signalling and TNF-α in the inflamed intestinal epithelia of IBD patients. J Crohns Colitis. 2019;13(4):495–509. doi: 10.1093/ecco-jcc/jjy180.
  • Martini E, Krug SM, Siegmund B, et al. Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2017;4(1):33–46. doi: 10.1016/j.jcmgh.2017.03.007.
  • Kuo WT, Zuo L, Odenwald MA, et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology. 2021;161(6):1924–1939. doi: 10.1053/j.gastro.2021.08.047.
  • Tan Y, Peng L, Wen L, et al. Correlations of inflammatory cytokines in the intestinal mucosa, serum inflammation, oxidative stresses and immune changes with vitamin deficiency in ulcerative colitis patients. Cell Mol Biol (Noisy-le-Grand). 2022;68(7):101–106. doi: 10.14715/cmb/2022.68.7.17.
  • Chami B, Martin NJJ, Dennis JM, et al. Myeloperoxidase in the inflamed colon: a novel target for treating inflammatory bowel disease. Arch Biochem Biophys. 2018;645:61–71. doi: 10.1016/j.abb.2018.03.012.
  • Viladomiu M, Metz ML, Lima SF, et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe. 2021;29(4):607–619.e8. doi: 10.1016/j.chom.2021.01.002.
  • Zhang J, Hoedt EC, Liu Q, et al. Elucidation of Proteus mirabilis as a key bacterium in Crohn’s disease inflammation. Gastroenterology. 2021;160(1):317–330.e11. doi: 10.1053/j.gastro.2020.09.036.
  • Fiorillo L, Cervino G, Laino L, et al. Porphyromonas gingivalis, periodontal and systemic implications: a systematic review. Dent J (Basel). 2019;7(4):114. doi: 10.3390/dj7040114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.