133
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The effect of Vortioxetine on the NLRP3 pathway and microglial activity in the prefrontal cortex in an experimental model of depression

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 264-275 | Received 26 Jan 2022, Accepted 15 Jan 2024, Published online: 29 Jan 2024

References

  • Smith KE, Pollak SD. Early life stress and development: potential mechanisms for adverse outcomes. J Neurodev Disord. 2020;12(1):34. doi: 10.1186/s11689-020-09337-y.
  • LeMoult J, Humphreys KL, Tracy A, et al. Meta-analysis: exposure to early life stress and risk for depression in childhood and adolescence. J Am Acad Child Adolesc Psychiatry. 2020;59(7):842–855. doi: 10.1016/j.jaac.2019.10.011.
  • Danese A, S JL. Psychoneuroimmunology of early-life stress: the hidden wounds of childhood trauma? Neuropsychopharmacology. 2017;42(1):99–114. doi: 10.1038/npp.2016.198.
  • Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–312. doi: 10.1038/nrn3722.
  • Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43–57. doi: 10.1016/j.pharmthera.2014.07.001.
  • Bennabi D, Haffen E, Van Waes V. Vortioxetine for cognitive enhancement in major depression: from animal models to clinical research. Front Psychiatry. 2019;10:771. doi: 10.3389/fpsyt.2019.00771.
  • Taskiran M, Unal G. Vortioxetine suppresses epileptiform activity and cognition deficits in a chronic PTZ-induced kindling rat model. Epileptic Disord. 2021 Dec 1;23(6):893–900. doi: 10.1684/epd.2021.1344.
  • Tomaz VS, Chaves Filho AJM, Cordeiro RC, et al. Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord. 2020;268:188–200. doi: 10.1016/j.jad.2020.03.022.
  • Alboni S, Benatti C, Colliva C, et al. Vortioxetine prevents lipopolysaccharide-induced memory impairment without inhibiting the initial inflammatory Cascade. Front Pharmacol. 2020;11:603979. doi: 10.3389/fphar.2020.603979.
  • Thomas AJ, Davis S, Morris C, et al. Increase in interleukin-1beta in late-life depression. Am J Psychiatry. 2005;162(1):175–177. doi: 10.1176/appi.ajp.162.1.175.
  • Kaufmann FN, Costa AP, Ghisleni G, et al. NLRP3 inflammasome-driven pathways in depression: clinical and preclinical findings. Brain Behav Immun. 2017;64:367–383. doi: 10.1016/j.bbi.2017.03.002.
  • Özdamar Ünal G, Hekimler Öztürk K, Erkılınç G, et al. Maternal prenatal stress and depression-like behavior associated with hippocampal and cortical neuroinflammation in the offspring: an experimental study. Intl J of Devlp Neuroscience. 2022;82(3):231–242. doi: 10.1002/jdn.10176.
  • Haapakoski R, Mathieu J, Ebmeier KP, et al. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–215. doi: 10.1016/j.bbi.2015.06.001.
  • Liu FR, Yang LY, Zheng HF, et al. Plasma levels of Interleukin 18 but not amyloid-beta or Tau are elevated in female depressive patients. Compr Psychiatry. 2020;97:152159. doi: 10.1016/j.comppsych.2020.152159.
  • Ribeiro DE, Roncalho AL, Glaser T, et al. P2X7 receptor signaling in stress and depression. Int J Mol Sci. 2019;20(11):2778. doi: 10.3390/ijms20112778.
  • Kouba BR, Gil-Mohapel J, S Rodrigues AL. NLRP3 inflammasome: from pathophysiology to therapeutic target in major depressive disorder. Int J Mol Sci. 2022;24(1):133.
  • Hendrickx DAE, van Eden CG, Schuurman KG, et al. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017;309:12–22. doi: 10.1016/j.jneuroim.2017.04.007.
  • Cosenza-Nashat MA, Kim MO, Zhao ML, et al. CD45 isoform expression in microglia and inflammatory cells in HIV-1 encephalitis. Brain Pathol. 2006;16(4):256–265. doi: 10.1111/j.1750-3639.2006.00027.x.
  • Sedgwick JD, Schwender S, Imrich H, et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A. 1991;88(16):7438–7442. doi: 10.1073/pnas.88.16.7438.
  • Antoniuk S, Bijata M, Ponimaskin E, et al. Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci Biobehav Rev. 2019;99:101–116. doi: 10.1016/j.neubiorev.2018.12.002.
  • Lin YH, Liu AH, Xu Y, et al. Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas. Behav Brain Res. 2005;165(1):63–71. doi: 10.1016/j.bbr.2005.06.034.
  • Ögün MN, Çetinkaya A, Beyazçiçek E. The effect of vortioxetine on penicillin-induced epileptiform activity in rats. Arq Neuro-Psiquiatr. 2019;77(6):412–417. doi: 10.1590/0004-282x20190064.
  • Zhang Y, Wang Y, Wang L, et al. Dopamine receptor D2 and associated microRNAs are involved in stress susceptibility and resistance to escitalopram treatment. Int J Neuropsychopharmacol. 2015;18(8):pyv025.
  • Liu MY, Yin CY, Zhu LJ, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc. 2018;13(7):1686–1698. doi: 10.1038/s41596-018-0011-z.
  • Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379–391. doi: 10.1016/0014-2999(78)90118-8.
  • Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229(2):327–336.
  • Karolewicz B, Paul IA. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. Eur J Pharmacol. 2001;415(2-3):197–201. doi: 10.1016/s0014-2999(01)00830-5.
  • Doguc DK, Deniz F, Ilhan I, et al. Prenatal exposure to artificial food colorings alters NMDA receptor subunit concentrations in rat hippocampus. Nutr Neurosci. 2021;24(10):784–794. doi: 10.1080/1028415X.2019.1681065.
  • Brotto LA, Barr AM, Gorzalka BB. Sex differences in forced-swim and open-field test behaviours after chronic administration of melatonin. Eur J Pharmacol. 2000;402(1–2):87–93. doi: 10.1016/s0014-2999(00)00491-x.
  • Mesembe O, Bisong S, Ekong M, et al. Neurobehavioural activity in albino Wistar rats in the open field maze following long term tobacco diet ingestion. Int J Neurol. 2008;10(2):345–363.
  • Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878. doi: 10.1038/s41598-017-17204-5.
  • Lu Y, Ho CS, McIntyre RS, et al. Effects of vortioxetine and fluoxetine on the level of Brain Derived Neurotrophic Factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res Bull. 2018;142:1–7. doi: 10.1016/j.brainresbull.2018.06.007.
  • Martis L-S, Højgaard K, Holmes MC, et al. Vortioxetine ameliorates anhedonic-like behaviour and promotes strategic cognitive performance in a rodent touchscreen task. Sci Rep. 2021;11(1):9113. doi: 10.1038/s41598-021-88462-7.
  • Carpenter LL, Gawuga CE, Tyrka AR, et al. Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology. 2010;35(13):2617–2623. doi: 10.1038/npp.2010.159.
  • Cubała WJ, Landowski J. C-reactive protein and cortisol in drug-naive patients with short-illness-duration first episode major depressive disorder: possible role of cortisol immunomodulatory action at early stage of the disease. J Affect Disord. 2014;152-154:534–537. doi: 10.1016/j.jad.2013.10.004.
  • Inserra A, Mastronardi CA, Rogers G, et al. Neuroimmunomodulation in major depressive disorder: focus on caspase 1, inducible nitric oxide synthase, and interferon-gamma. Mol Neurobiol. 2019;56(6):4288–4305. doi: 10.1007/s12035-018-1359-3.
  • Su WJ, Zhang Y, Chen Y, et al. NLRP3 gene knockout blocks NF-kappaB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res. 2017;322(Pt A):1–8. doi: 10.1016/j.bbr.2017.01.018.
  • Zhang Y, Liu L, Liu YZ, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol. 2015;18(8):1–8.
  • Zhang Y, Liu L, Peng YL, et al. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther. 2014;20(2):119–124. doi: 10.1111/cns.12170.
  • Alcocer-Gómez E, Casas-Barquero N, Williams MR, et al. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol Res. 2017;121:114–121. doi: 10.1016/j.phrs.2017.04.028.
  • Kagaya A, Kugaya A, Takebayashi M, et al. Plasma concentrations of interleukin-1beta, interleukin-6, soluble interleukin-2 receptor and tumor necrosis factor alpha of depressed patients in Japan. Neuropsychobiology. 2001;43(2):59–62. doi: 10.1159/000054867.
  • Stratz C, Bhatia HS, Akundi RS, et al. The anti-inflammatory effects of the 5-HT(3) receptor antagonist tropisetron are mediated by the inhibition of p38 MAPK activation in primary human monocytes. Int Immunopharmacol. 2012;13(4):398–402. doi: 10.1016/j.intimp.2012.05.013.
  • Levine J, Barak Y, Chengappa KN, et al. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology. 1999;40(4):171–176. doi: 10.1159/000026615.
  • Rao JS, Harry GJ, Rapoport SI, et al. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15(4):384–392. doi: 10.1038/mp.2009.47.
  • Tsai SJ. Effects of interleukin-1beta polymorphisms on brain function and behavior in healthy and psychiatric disease conditions. Cytokine Growth Factor Rev. 2017;37:89–97. doi: 10.1016/j.cytogfr.2017.06.001.
  • Maes M, Song C, Yirmiya R. Targeting IL-1 in depression. Expert Opin Ther Targets. 2012;16(11):1097–1112. doi: 10.1517/14728222.2012.718331.
  • Ng A, Tam WW, Zhang MW, et al. IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep. 2018;8(1):12050. doi: 10.1038/s41598-018-30487-6.
  • Corwin EJ, Johnston N, Pugh L. Symptoms of postpartum depression associated with elevated levels of interleukin-1 beta during the first month postpartum. Biol Res Nurs. 2008;10(2):128–133. doi: 10.1177/1099800408323220.
  • Koo JW, Duman RS. Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr Opin Investig Drugs. 2009;10(7):664–671.
  • Sugama S, Conti B. Interleukin-18 and stress. Brain Res Rev. 2008;58(1):85–95. doi: 10.1016/j.brainresrev.2007.11.003.
  • Al-Hakeim HK, Al-Rammahi DA, Al-Dujaili AH. IL-6, IL-18, sIL-2R, and TNFalpha proinflammatory markers in depression and schizophrenia patients who are free of overt inflammation. J Affect Disord. 2015;182:106–114. doi: 10.1016/j.jad.2015.04.044.
  • Munkholm K, Weikop P, Kessing LV, et al. Elevated levels of IL-6 and IL-18 in manic and hypomanic states in rapid cycling bipolar disorder patients. Brain Behav Immun. 2015;43:205–213. doi: 10.1016/j.bbi.2014.09.021.
  • Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: implications for psychiatric disorders. Brain Behav Immun. 2018;73:66–84. doi: 10.1016/j.bbi.2018.06.010.
  • Pan Y, Chen XY, Zhang QY, et al. Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41:90–100. doi: 10.1016/j.bbi.2014.04.007.
  • Mattei D, Notter T. Basic concept of microglia biology and neuroinflammation in relation to psychiatry. Curr Top Behav Neurosci. 2020;44:9–34. doi: 10.1007/7854_2018_83.
  • Jimenez-Mateos EM, Smith J, Nicke A, et al. Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull. 2019;151:153–163. doi: 10.1016/j.brainresbull.2018.12.008.
  • Feng WP, Zhang B, Li W, et al. Lack of association of P2RX7 gene rs2230912 polymorphism with mood disorders: a meta-analysis. PLoS One. 2014;9(2):e88575. doi: 10.1371/journal.pone.0088575.
  • Green EK, Grozeva D, Raybould R, et al. P2RX7: a bipolar and unipolar disorder candidate susceptibility gene? Am J Med Genet B Neuropsychiatr Genet. 2009;150B(8):1063–1069. doi: 10.1002/ajmg.b.30931.
  • Grigoroiu-Serbanescu M, Herms S, Muhleisen TW, et al. Variation in P2RX7 candidate gene (rs2230912) is not associated with bipolar I disorder and unipolar major depression in four european samples. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(7):1017–1021. doi: 10.1002/ajmg.b.30952.
  • Hejjas K, Szekely A, Domotor E, et al. Association between depression and the Gln460Arg polymorphism of P2RX7 gene: a dimensional approach. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(2):295–299. doi: 10.1002/ajmg.b.30799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.