89
Views
15
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Protein Kinases in Organ Ischemia and Reperfusion

, MD, PhD, , MD, MS & , MD
Pages 215-226 | Received 15 Mar 2008, Accepted 14 Apr 2008, Published online: 09 Jul 2009

REFERENCES

  • Raju T N. The Nobel chronicles. 1992: Edmond H Fischer (b 1920) and Edwin G Krebs (b 1918). Lancet 2004; 3: 355
  • Wilks A F, Harpur A G. Intracellular Signal Transduction: The JAK-STAT Pathway. R. G. Landes Company, Austin, TX 1996
  • Ray L B, Sturgill T W. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubules associated protein 2 in vitro. Proc. Natl. Acad. Sciences, USA 1987; 84: 1502–1506
  • Krauss G. Biochemistry of Signal Transduction and Regulation, Third Edition. Wiley-VCH, Weinheim 2003
  • Lopez-Neblina F, Toledo-Pereyra L H. Phosphoregulation and signal transduction pathways in ischemia and reperfusion. J Surg Res 2006; 34: 292–299
  • Frontiers in Molecular Biology: Protein Kinase Functions, J Woodgett. Oxford University Press, Oxford 2000
  • Gomperts B D, Kramer I J, Tatham P ER. Signal Transduction. Academic Press, San Diego 2002
  • Toledo-Pereyra L H, Lopez-Neblina F, Reuben J S, Toledo A H, Ward P A. Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia and reperfusion. J Invest Surg. 2004; 17: 303–313
  • Lopez-Neblina F, Toledo A H, Toledo-Pereyra L H. Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg. 2005; 18: 335–350
  • Lai E W, Toledo-Pereyra L H, Walsh J, et al. The role of MAP kinases in trauma and ischemia-reperfusion. J Invest Surg. 2004; 17: 45–53
  • Li X L, Man K, Ng K T, et al. The influence of phosphatidylinositol 3-kinase/Akt pathway on the ischemic injury during rat liver graft preservation. Am J Transplant. 2005; 5: 1264–1275
  • Uehara T, Peng X X, Bennet B, et al. C-Jun N-terminal kinase mediates hepatic injury after rat liver transplantation. Transplantation. 2004; 78: 324–332
  • Crenesse D, Laurens M, Gugenheim J, et al. Intermittent ischemia reduces warm hypoxia-reoxygenation-induced JNK1/SAPK1 Activation and apoptosis in rat hepatocytes. Hepatology 2001; 34: 972–978
  • Mardenstein E L, Bucher B, Guo Z, et al. Protection of rat hepatocytes from apoptosis by inhibition of c-Jun N-Terminal kinase. Surgery 2003; 134: 280–284
  • Uehara T, Bennet B, Sakata S T, et al. JNK mediates hepatic ischemia reperfusion injury. J Hepatology 2005; 42: 850–859
  • Matsumoto S, Shamloo M, Matsumoto E, et al. Protein kinase C-gamma and calcium/calmodulin-dependent protein kinase II-alpha are persistently translocated to cell membranes of the rat brain during and after middle cerebral artery occlusion. J Cereb Blood Flow Metab 2004; 24: 54–61
  • Mengesdorf T, Althausen S, Mies G, et al. Phosphorylation state, solubility, and activity of calcium/calmodulin-dependent protein kinase II alpha in transient focal ischemia in mouse brain. Neurochem Res 2002; 27: 477–484
  • Babcock A M, Everingham A, Paden C M, et al. Baclofen is neuroprotective and prevents loss of calcium/calmodulin-dependent protein kinase II immunoreactivity in the ischemic gerbil hippocampus. J Neurosci Res 2002; 67: 804–811
  • Osada M, Netticadan T, Kawabata K, et al. Ischemic preconditioning prevents I/R-induced alteration in SR calcium-calmodulin protein kinase II. Am J Physiol Heart Circ Physiol. 2000; 278: H1791–H1798
  • Kumar D, Menon V, Ford W R, et al. Effect of angiotensin II type 2 receptor blockade on mitogen activated protein kinases during myocardial ischemia-reperfusion. Mol Cell Biochem 2004; 258: 211–218
  • Sperelakis N. Regulation of calcium slow channels of heart by cyclic nucleotides and effects of ischemia. Adv Pharmacol. 1994; 31: 1–24
  • Mapelli M, Massimiliano L, Corvace C, et al. Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 2005; 48: 671–679
  • Boehm M, Nabel E G. The cell cycle and cardiovascular diseases. Prog Cell Cycle Res. 2005; 5: 19–30
  • Maejima Y, Adachi S, Ito H, et al. Nitric oxide inhibits ischemia/reperfusion-induced myocardial apoptosis by modulating cyclin A-associated kinase activity. Cardiovasc Res 2003; 59: 308–320
  • Kato H, Takahashi A, Itoyama Y. Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull. 2003; 60: 215–221
  • Wang F, Corbett D, Osuga H, et al. Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J Cereb Blood Flow Metab 2002; 22: 171–182
  • Osuga H, Osuga S, Wang F, et al. Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci USA 2000; 97: 10254–10259
  • Petkova S B, Ashton A, Bouzahzah B, et al. Cell cycle molecules and diseases of the cardiovascular system. Frontiers Biosci 2000; 5: 452–460
  • Reiss K, Cheng W, Giorando A, et al. Myocardial infarction is coupled with activation of cyclins and cyclin-dependent kinases in myocytes. Exp Cell Res 1996; 225: 44–54
  • Okada T, Otani H, Wu Y, et al. Integrated pharmacological preconditioning and memory of cardioprotection: The role of protein kinase C and phosphatidylinositol 3-kinase. Am J Physiol Heart Circ Physiol. 2005, __:__–__
  • Hunter T, Sefton B M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 1980; 77: 1311–1315
  • Rebas E, Lachowicz L, Massur M, et al. The activity of protein tyrosine kinases of rat heart after ischemia and reperfusion. Med Sci Monit 2001; 7: 884–888
  • Tan D, Litvak V, Lev S. Cerebral ischemia and seizures induce tyrosine phosphorylation of PYK2 in neurons and microglial cells. J Neurosci. 2000; 20: 6478–6487
  • Phosphorylation. 2005, Available at: http://en.wikipedia.org/wiki/Phosphorylation Accessed June 16.
  • Takikita-Suzuki M, Haneda M, Sasahara M, et al. Activation of Src kinase in platelet-derived growth factor-B-dependent tubular regeneration after acute ischemic renal injury. Am J Pathol 2003; 163: 277–286
  • van der Wijk T, Blanchetot C, den Hertog J. Regulation of receptor protein-tyrosine phosphatase dimerization. Methods 2005; 35: 73–79
  • Fan C, Li Q, Zhang Y, et al. IkappaB alpha and IkappaB beta possess injury context-specific functions that uniquely influence hepatic NF-kappaB induction and inflammation. J Clin Invest 2004; 113: 746–755
  • Yin T, Sandhu G, Wolfgang C D, et al. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 1997; 272: 19943–19950
  • Piiper A, Zeuzem S. Receptor tyrosine kinases are signaling intermediates of G protein-coupled receptors. Curr Pharm Des 2004; 10: 3539–3545
  • Parsons S J, Parsons J T. Src family kinases, key regulators of signal transduction. Oncogene 2004; 23: 7906–7909
  • Takagi N, Sasakawa K, Besshoh S, et al. Transient ischemia enhances tyrosine phosphorylation and binding of the NMDA receptor to the Src homology 2 domain of phosphatidylinositol 3-kinase in the rat hippocampus. J Neurochem 2003; 84: 67–76
  • Pei L, Li Y, Yan J Z, et al. Changes and mechanisms of protein-tyrosine kinase and protein-tyrosine phosphatase activities after brain ischemia/reperfusion. Acta Pharmaco Sin 2000; 21: 715–720
  • Song B, Meng F, Yan X, et al. Cerebral ischemia immediately increases serine phosphorylation of the synaptic RAS-GTPase activating protein SynGAP by calcium/calmodulin-dependent protein kinase II alpha in hippocampus of rats. Neurosci Lett 2003; 349: 183–186
  • Ma X L, Lopez B L, Christopher T A, et al. Post-ischemic myocardial apoptosis and cardiac function. Acad Emergency Med. 1999; 6: 511
  • Barancik M, Htun P, Strohm C, et al. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 2000; 35: 474–83
  • Li J, Miller E J, Ninomiya-Tsuji J, et al. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ Res. 2005; 97: 872
  • Jaswal J S, Gandhi M, Finegan B A, et al. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol Heart Circ Physiol. 2007; 293: H1107–H1114
  • Sun X C, Li W B, Li Q J, et al. Limb ischemic preconditioning includes brain ischemic tolerance via p38 MAPK. Brain Res 2006; 1084: 165–174
  • Mullonkal C, Toledo-Pereyra L H. Akt in ischemia and reperfusion. J Invest Surg. 2007; 20: 195–203
  • Berg J M, Tymoczko J L, Stryer L. Covalent Modification Is a Means of Regulating Enzyme Activity in Biochemistry, 5th ed., Available at: http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=stryer.section.1363 Accessed June 17, 2005.
  • Cai Z, Semenza G L. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 2004; 109: 2050–2053
  • Qin Q, Downey J M, Cohen M V. Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase. Am J Physiol Heart Circ Physiol 2003; 284: H727–H734
  • Baines C P, Wang L, Cohen M V, et al. Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res Cardiol 1999; 94: 188–198
  • Sanada S, Kitakaze M. Ischemic preconditioning: emerging evidence, controversy, and translational trials. Int J Cardiol 2004; 97: 263–276
  • Mocanu M M, Bell R M, Yellon D M. PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol 2002; 34: 661–668
  • Argaud L, Ovize M. How to use the paradigm of ischemic preconditioning to protect the heart?. Med Sci 2004; 20: 521–525
  • Hausenloy D J, Tsang A, Yellon D M. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 2005; 15: 69–75
  • Carini R, Grazia de Cesaris M, Splendore R, et al. Role of phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning. Gastroenterology 2004; 127: 914–923
  • Bell R M, Yellon D M. Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol 2003; 35: 185–193
  • Kane L P, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 2003; 192: 7–20
  • Brazil D P, Park J, Hemmings B A. PKB binding proteins: getting in on the Akt. Cell 2002; 111: 293–303
  • Dougherty C J, Kubasiak L A, Frazier D P, et al. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J 2004; 18: 1060–1070
  • Marderstein E L, Bucher B, Guo Z, et al. Protection of rat hepatocytes from apoptosis by inhibition of c-Jun N-terminal kinase. Surgery 2003; 134: 280–2843
  • Krupinski J, Slevin M, Marti E, et al. Time-course phosphorylation of the mitogen activated protein (MAP) kinase group of signalling proteins and related molecules following middle cerebral artery occlusion (MCAO) in rats. Neuropathol Appl Neurobiol 2003; 29: 144–158
  • Dougherty C J, Kubasiak L A, Prentice H, et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 2002; 362: 561–571
  • Park K M, Chen A, Bonventre J V. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem 2001; 276: 11870–11876
  • Ferrer I, Friguls B, Dalfo E, et al. Early modification in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 2003; 105: 425–437
  • Jonassen A K, Sack M N, Mjos O D, et al. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001; 89: 1191–1198
  • Li Y, Sato T. Dual signaling via protein kinase C and phosphatidylinositol 3′-kinase/Akt contributes to bradykinin B2 receptor-induced cardioprotection in guinea pig hearts. J Mol Cell Cardiol 2001; 33: 2047–2053
  • Alessandrini A, Namura S, Moskowitz M A, et al. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA 1999; 96: 12866–12869
  • Kindy M S. Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. J Cereb Blood Flow Metab 1993; 13: 372–377
  • Alessi D R, Cuenda A, Cohen P, et al. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270: 27489–27494
  • Phillis J, Song D, O'Regan M. Inhibition of thyrosine phosphorylation attenuates aminoacid neurotrasmitter released from the ischemic reperfused rat cerebral cortex. Neurosci Lett 1996; 207: 151–154
  • Roth S, Shaikh A R, Hennelly M M, et al. Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci 2003; 44: 5383–5395
  • Wang X, Wang H, Xu L, et al. Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. J Pharmacol Exp Ther 2003; 304: 172–178
  • Vartiainen N, Goldsteins G, Keksa-Goldsteine V, et al. Aspirin inhibits p44/42 mitogen-activated protein kinase and is protective against hypoxia/reoxygenation neuronal damage. Stroke 2003; 34: 752–757
  • Lennmyr F, Karlsson S, Gerwins P, et al. Activation of mitogen-activated protein kinases in experimental cerebral ischemia. Acta Neurol Scand 2002; 106: 333–340
  • Fryer R M, Hsu A K, Gross G J. ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol 2001; 96: 136–142
  • Hausenloy D J, Yellon D M. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004; 61: 448–460
  • Hausenloy D J, Mocanu M M, Yellon D M. Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 2004; 63: 305–312
  • Muller C, Dunschede F, Koch E, et al. Alpha-lipoic acid preconditioning reduces ischemia-reperfusion injury of the rat liver via the PI3-kinase/Akt pathway. Am J Physiol Gastrointest Liver Physiol 2003; 285: G769–G778
  • Eefting F, Rensing B, Wigman J, et al. Role of apoptosis in reperfusion injury. Cardiovasc Res 2004; 61: 414–426
  • Clerk A, Fuller S J, Michael A, et al. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem 1998; 273: 7228–7234
  • He Q P, Ding C, Li P A. Effects of hyperglycemic and normoglycemic cerebral ischemia on phosphorylation of c-jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Cell Mol Biol (Noisy-le-grand) 2003; 49: 1241–1247
  • Irving E A, Barone F C, Reith A D, Hadingham S J, Parsons A A. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 2000; 77: 65–75
  • Ferrer I, Friguls B, Dalfo E, et al. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol (Berl) 2003; 105: 425–437
  • Piao C S, Kim J B, Han P L, et al. Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 2003; 73: 537–544
  • Teoh N, Dela Pena A, Farrell G. Hepatic ischemic preconditioning in mice is associated with activation of NF-kappaB, p38 kinase, and cell cycle entry. Hepatology 2002; 36: 94–102
  • Loubani M, Hassouna A, Galinanes M. Delayed preconditioning of the human myocardium: signal transduction and clinical implications. Cardiovasc Res 2004; 61: 600–609
  • Vogt M, Bauer M K, Ferrari D, et al. Oxidative stress and hypoxia/reoxigenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett 1998; 429: 67–72
  • Maulik N, Yoshida T. Oxidative stress developed during open heart surgery induces apoptosis: reduction of apoptotic cell death by ebselen, a glutathione peroxidase mimic. J Cardiovasc Pharmacol 2000; 36: 601–608
  • Fan C, Li Q, Zhang Y, et al. IkappaBalpha and IkappaBbeta possess injury context-specific functions that uniquely influence hepatic NF-kappaB induction and inflammation. J Clin Invest 2004; 113: 746–755
  • Suzuki S, Toledo-Pereyra L H. Interleukin-1 and tumor necrosis factor production as the initial stimulants of liver ischemia and reperfusion injury. J Surg Res. 1994; 57: 253–258
  • Ramos-Kelly J R, Toledo-Pereyra L H, Jordan J, et al. Multiple selectin blockade with a small molecule inhibitor downregulates liver chemokine expression and neutrophil infiltration after hemorrhagic shock. J Trauma 2000; 49: 92–100
  • Toledo-Pereyra L H, Rivera-Chavez F A, Dean R E. Hepatic ischemia and reperfusion: results from 21 years of research. Cir Gen 1998; 20: 273–283
  • Martinez-Mier G, Toledo-Pereyra L H, Ward P A. P-selectin and chemokine response after liver ischemia and reperfusion. J Am Coll Surg 2000; 191: 395
  • Rivera-Chavez F A, Toledo-Pereyra L H, Nora D T, et al. P-selectin blockade is beneficial after uncontrolled hemorrhagic shock. J Trauma 1998; 45: 404–409
  • Toledo-Pereyra L H. Advances in the knowledge of ischemia and reperfusion Injury. Molecular aspects of leukocyte endothelial adhesion molecule interaction. Rev Cir Esp 1994; 55: 331–332
  • Toledo-Pereyra L H, Suzuki S. Neutrophils, cytokines and adhesion molecules in hepatic ischemia and reperfusion injury. J Amer Coll Surg 1994; 179: 759–764
  • Suzuki S, Toledo-Pereyra L H. Monoclonal antibody to intercellular adhesion molecule 1 as an effective protection for liver ischemia and reperfusion injury. Transpl Proc. 1993; XXV: 3325–3329
  • Patel K D, Curvelier S L, Wiehler S. Selectins: critical mediators of leukocyte recruitment. Immunology 2002; 14: 73–81
  • Kubes P, Ward P A. Leukocyte recruitment and the acute inflammatory response. Brain Path 2000; 10: 127–135
  • Etzioni A. Integrins: the molecular glue of life. Hosp Pract 2000; 35: 102–108
  • Nemoto T, Burne M J, Daniels F, et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Internat 2001; 60: 2205–2214
  • Martinez-Mier G, Toledo-Pereyra L H, Bussell S, et al. Nitric oxide diminishes apoptosis and p53 gene expression after renal ischemia and reperfusion injury. Transplantation 2000; 70: 1431–1437
  • Toledo-Pereyra L, Lopez-Neblina F, Reuben J, et al. Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia-reperfusion. J Inv Surg 2004; 17: 320
  • Toledo-Pereyra L H, Lopez-Neblina F, Lentsch A B, et al. Selectin inhibition modulates NFkB and AP-1 signaling after liver ischemia/reperfusion. J Invest Surg 2006; 19: 313–322
  • Brazil D P, Park J, Hemmings B A. PKB binding proteins: getting in on the Akt. Cell 2002; 111: 293–303
  • Kane L P, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 2003; 192: 7–20
  • Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature 2001; 410: 37–40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.