Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue sup1
383
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: Need for multiparametric evaluation due to adsorption artifacts

, , , , &
Pages 115-122 | Received 26 Mar 2009, Accepted 02 Apr 2009, Published online: 30 Jun 2009

References

  • Bermudez, E., Mangum, JB., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B., Everitt, J. I. 2003. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 77:347–357.
  • Donaldson, K., Tran, L., Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., MacNee, W., Stone, V. 2005. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2:10.
  • Gilmour, P. S., Ziesenis, A., Morrison, E. R., Vickers, M. A., Drost, E. M., Ford, I., Karg. E., Mossa, C., Schroeppel, A., Ferron, G. A., Heyder, J., Greaves, M., MacNee, W., Donaldson, K. 2004. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol. Appl. Pharmacol. 15;195:35–44.
  • Grassian, V. H., O’shaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., Thorne, P. S. 2007. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health. Perspect. 115:397–402.
  • Gwinn, M. R., Vallyathan, V. 2006. Nanoparticles: health effects—Pros and cons. Environ. Health Perspect. 114:1818–1825.
  • Hussain, S., Boland, S., Baeza-Squiban, A., Hamel, R., Thomassen, L.C., Martens, J.A., Billon-Galland, M.A., Fleury-Feith, J., Moisan, F., Pairon, J.C., Marano, F. 2009 Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 260:142–149
  • Inoue, K., Takano, H., Yanagisawa, R., Hirano, S., Sakurai, M., Shimada, A., Yoshikawa, T. 2006. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ. Health. Perspect. 114:1325–1330.
  • Kim, H., Liu, X., Kobayashi, T., Kohyama, T., Wen, F. Q., Romberger, D. J., Conner, H., Gilmour, P. S., Donaldson, K., MacNee, W., Rennard, S. I. 2003. Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction. Am. J. Respir. Cell Mol. Biol. 28:111–121.
  • Kocbach, A., Totlandsdal, A. I., Låg, M., Refsnes, M., Schwarze, P. E. 2008. Differential binding of cytokines to environmentally relevant particles: A possible source for misinterpretation of in vitro results? Toxicol. Lett. 30(176):131–137.
  • Kreyling, W. G., Moler, W., Semmler-Behnke, M., Oberdorster, G. 2007. Particle dosimetry: Deposition and clearance from the respiratory tract and translocation towards extra-pulmonary sites. In “Particle Toxicology,” eds. K. Donaldson, P. Borm, CRC Press, Taylor & Francis, Philadelphia, pp. 47–74.
  • Lucarelli, M., Gatti, A. M., Savarino, G., Quattroni, P., Martinelli, L., Monari, E., Boraschi, D. 2004. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur. Cytokine Network 15:339–346.
  • Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempfs, J., Wang, M., Oberley, T., Froines, J., Nel, A. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111:455–460.
  • Lin, W., Huang, Y. W., Zhou, X. D., Ma, Y. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 15(217):252–259.
  • Nel, A., Xia, T., Mädler, L., Li, N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Oberdörster, G., Finkelstein, J. N., Johnston, C., Gelein, R., Cox, C., Baggs, R., Elder, A. C. 2000. Acute pulmonary effects of ultrafine particles in rats and mice. Res. Rep. Health Effects Inst. 96:5–74.
  • Oberdörster, G., Oberdorster, E., Oberdorster, J. 2005. Nanotechnology: An emerging discipline evolving from studies of ultrafine particles. Eviron. Health Pespect. 113:823–839.
  • Pfaffil, M. W. 2001. A new mathematical model for the relative quatification in real time RT-PCR. Nucleic Acid Res. 29:e45.
  • Ramgolam, K. Chevaillier, S., Marano, F., Baeza-Squiban, A., Martinon, L. 2008. Proinflammatory effect of fine and ultrafine particulate matter using size-resolved urban aerosols from Paris. Chemosphere January 72:1340–1346.
  • Renwick, L.C., Brown, D.M., Clouter, A., Donaldson, K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 61:442–447.
  • Rothen-Rutishauser, B., Mühlfeld, C., Blank, F., Musso, C., Gehr, P. 2007. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part. Fibre Toxicol. 25(4):9.
  • Singh, S., Shi, T., Duffin, R., Albrecht, C., van Berlo, D., Höhr, D., Fubini B., Martra, G., Fenoglio, I., Borm, P. J., Schins, R. P. 2007. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles. Toxicol. Appl. Pharmacol. 15:141–151.
  • Steerenberg, P. A., Zonnenberg, J. A., Dormans, J. A., Joon, P. N., Wouters, I. M., van Bree, L., Scheepers, P. T., Van Loveren, H. 1998. Diesel exhaust particles induced release of interleukin 6 and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro. Exp. Lung Res. 24:85–100.
  • Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., Heyder, J., Schulz, H. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 114:328–333.
  • Veranth, J. M., Kaser, E. G., Veranth, M. M., Koch, M., Yost, G. S. 2007. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part. Fibre Toxicol. 27(4):2.
  • Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., Stone, V. 2002. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol. 184:172–179.
  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J. I., Wiesner, M. R., Nel, A. E. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6:1794–807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.