294
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Intratracheal instillation of respirable particulate matter elicits neuroendocrine activation

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 59-75 | Received 18 Feb 2022, Accepted 19 Apr 2022, Published online: 22 Jul 2022

References

  • Alarie Y. 1973. Sensory irritation by airborne chemicals. CRC Crit Rev Toxicol. 2(3):299–363.
  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS. 2016. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44(W1):W147–W153.
  • Bandyopadhyay A. 2016. Neurological disorders from ambient (urban) air pollution emphasizing UFPM and PM2.5. Curr Pollution Rep. 2(3):203–211.
  • Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. 2014. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol. 222(3):G13–25.
  • Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, et al. 2010. American Heart Association Council on epidemiology and prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 121(21):2331–2378.
  • Chen LC, Lippmann M. 2009. Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol. 21(1):1–31.
  • Chiarella SE, Soberanes S, Urich D, Morales-Nebreda L, Nigdelioglu R, Green D, Young JB, Gonzalez A, Rosario C, Misharin AV, et al. 2014. β2-Adrenergic agonists augment air pollution-induced IL-6 release and thrombosis. J Clin Invest. 124(7):2935–2946.
  • Clementi EA, Talusan A, Vaidyanathan S, Veerappan A, Mikhail M, Ostrofsky D, Crowley G, Kim JS, Kwon S, Nolan A. 2019. Metabolic syndrome and air pollution: a narrative review of their cardiopulmonary effects. Toxics. 7(1):6.
  • Clemons GK, Wei D. 1984. Effect of short-term ozone exposure on exogenous thyroxine levels in thyroidectomized and hypophysectomized rats. Toxicol Appl Pharmacol. 74(1):86–90.
  • Davoodabadi Z, Soleimani A, Pourmoghaddas A, Hosseini SM, Jafari-Koshki T, Rahimi M, Shishehforoush M, Lahijanzadeh A, Sadeghian B, Moazam E, et al. 2019. Correlation between air pollution and hospitalization due to myocardial infarction. ARYA Atheroscler. 15(4):161–167.
  • Fujimaki H, Kurokawa Y, Yamamoto S, Satoh M. 2006. Distinct requirements for interleukin-6 in airway inflammation induced by diesel exhaust in mice. Immunopharmacol Immunotoxicol. 28(4):703–714.
  • Gackière F, Saliba L, Baude A, Bosler O, Strube C. 2011. Ozone inhalation activates stress-responsive regions of the CNS. J Neurochem. 117(6):961–972.
  • Gorbacheva AM, Kuprash DV, Mitkin NA. 2018. Glucocorticoid receptor binding inhibits an Intronic IL33 enhancer and is disrupted by rs4742170 (T) allele associated with specific wheezing phenotype in early childhood. IJMS. 19(12):3956.
  • Harkema JR, Carey SA, Wagner JG. 2006. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol. 34(3):252–269.
  • Health Effects Institute. 2020. State of global air 2020. Special report. Boston, MA: Health Effects Institute.
  • Henriquez A, House J, Miller DB, Snow SJ, Fisher A, Ren H, Schladweiler MC, Ledbetter AD, Wright F, Kodavanti UP. 2017. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation. Toxicol Appl Pharmacol. 329:249–258.
  • Henriquez AR, House JS, Snow SJ, Miller CN, Schladweiler MC, Fisher A, Ren H, Valdez M, Kodavanti PR, Kodavanti UP. 2019. Ozone-induced dysregulation of neuroendocrine axes requires adrenal-derived stress hormones. Toxicol Sci. 172(1):38–50.
  • Henriquez AR, Snow SJ, House JS, Motsinger-Reif AA, Ward-Caviness CK, Schladweiler MC, Alewel DI, Miller CN, Farraj AK, Hazari MS, et al. 2021b. Glucose dynamics during ozone exposure measured using radiotelemetry: stress drivers (preprint). BioRxiv. https://doi.org/10.1101/2021.12.09.471963.
  • Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Dye JA, Ledbetter AD, Richards JE, Mauge-Lewis K, McGee MA, Kodavanti UP. 2018a. Adrenergic and glucocorticoid receptor antagonists reduce ozone-induced lung injury and inflammation. Toxicol Appl Pharmacol. 339:161–171.
  • Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Dye JA, Ledbetter AD, Richards JE, Hargrove MM, Williams WC, Kodavanti UP. 2018b. Beta-2 adrenergic and glucocorticoid receptor agonists modulate ozone-induced pulmonary protein leakage and inflammation in healthy and adrenalectomized rats. Toxicol Sci. 166(2):288–305.
  • Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Kodavanti UP. 2020. Independent roles of beta-adrenergic and glucocorticoid receptors in systemic and pulmonary effects of ozone. Inhal Toxicol. 32(4):155–169.
  • Henriquez AR, Williams W, Snow SJ, Schladweiler MC, Fisher C, Hargrove MM, Alewel D, Colonna C, Gavett SH, Miller CN, et al. 2021a. The dynamicity of acute ozone-induced systemic leukocyte trafficking and adrenal-derived stress hormones. Toxicology. 458:152823.
  • Hiraiwa K, van Eeden SF. 2013. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm. 2013:619523.
  • Howe CG, Eckel SP, Habre R, Girguis MS, Gao L, Lurmann FW, Gilliland FD, Breton CV. 2018. Association of prenatal exposure to ambient and traffic-related air pollution with newborn thyroid function: findings from the Children's Health Study. JAMA Netw Open. 1(5):e182172.
  • Huffman LJ, Beighley CM, Frazer DG, McKinney WG, Porter DW. 2006. Increased susceptibility of the lungs of hyperthyroid rats to oxidant injury: specificity of effects. Toxicology. 225(2–3):119–127.
  • Joëls M, Sarabdjitsingh RA, Karst H. 2012. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev. 64(4):901–938.
  • Kafoury RM, Madden MC. 2005. Diesel exhaust particles induce the over expression of tumor necrosis factor-alpha (TNF-alpha) gene in alveolar macrophages and failed to induce apoptosis through activation of nuclear factor-kappaB (NF-kappaB). IJERPH. 2(1):107–113.
  • Kim H, Kim WH, Kim YY, Park HY. 2020. Air pollution and central nervous system disease: a review of the impact of fine particulate matter on neurological disorders. Front Public Health. 8:575330.
  • Kodavanti UP. 2019. Susceptibility variations in air pollution health effects: incorporating neuroendocrine activation. Toxicol Pathol. 47(8):962–975.
  • Kodavanti UP, Hauser R, Christiani DC, Meng ZH, McGee J, Ledbetter A, Richards J, Costa DL. 1998. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol Sci. 43(2):204–212.
  • Kodavanti UP, Jaskot RH, Su WY, Costa DL, Ghio AJ, Dreher KL. 1997. Genetic variability in combustion particle-induced chronic lung injury. Am J Physiol. 272(3 Pt 1):L521–L532.
  • Kodavanti UP, Schladweiler MC, Ledbetter AD, Hauser R, Christiani DC, McGee J, Richards JR, Costa DL. 2002. Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. J Toxicol Environ Health A. 65(20):1545–1569.
  • Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, Richards JR, Crissman KM, Hatch GE, Costa DL. 2000. The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol Appl Pharmacol. 164(3):250–263.
  • Kulkarni MM. 2011. Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr Protoc Mol Biol. Chapter 25:Unit25B.10.
  • Kumagai K, Lewandowski R, Jackson-Humbles DN, Li N, Van Dyken SJ, Wagner JG, Harkema JR. 2016. Ozone-induced nasal type 2 immunity in mice is dependent on innate lymphoid cells. Am J Respir Cell Mol Biol. 54(6):782–791.
  • Kumar S, Joos G, Boon L, Tournoy K, Provoost S, Maes T. 2017. Role of tumor necrosis factor-α and its receptors in diesel exhaust particle-induced pulmonary inflammation. Sci Rep. 7(1):11508.
  • Li Y, Sun B, Shi Y, Jiang J, Du Z, Chen R, Duan J, Sun Z. 2020. Subacute exposure of PM2.5 induces airway inflammation through inflammatory cell infiltration and cytokine expression in rats. Chemosphere. 251:126423.
  • Marchini T, Wolf D, Michel NA, Mauler M, Dufner B, Hoppe N, Beckert J, Jäckel M, Magnani N, Duerschmied D, et al. 2016. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages. Basic Res Cardiol. 111(4):44.
  • Mazzone SB, Undem BJ. 2016. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 96(3):975–1024.
  • McEwen BS, Akil H. 2020. Revisiting the stress concept: implications for affective disorders. J Neurosci. 40(1):12–21.
  • Miller DB, Karoly ED, Jones JC, Ward WO, Vallanat BD, Andrews DL, Schladweiler MC, Snow SJ, Bass VL, Richards JE, et al. 2015. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicol Appl Pharmacol. 286(2):65–79.
  • Miller DB, Snow SJ, Schladweiler MC, Richards JE, Ghio AJ, Ledbetter AD, Kodavanti UP. 2016. Acute ozone-induced pulmonary and systemic metabolic effects are diminished in adrenalectomized rats. Toxicol Sci. 150(2):312–322.
  • Pan B, Chen M, Zhang X, Liang S, Qin X, Qiu L, Cao Q, Peng R, Tao S, Li Z, et al. 2021. Hypothalamic-pituitary-adrenal axis mediates ambient PM2.5 exposure-induced pulmonary inflammation. Ecotoxicol Environ Saf. 208:111464.
  • Rabbitt EH, Lavery GG, Walker EA, Cooper MS, Stewart PM, Hewison M. 2002. Prereceptor regulation of glucocorticoid action by 11beta-hydroxysteroid dehydrogenase: a novel determinant of cell proliferation. Faseb J. 16(1):36–44.
  • Saunders V, Breysse P, Clark J, Sproles A, Davila M, Wills-Karp M. 2010 May. Particulate matter-induced airway hyperresponsiveness is lymphocyte dependent. Environ Health Perspect. 118(5):640–646.
  • Saxena RK, Gilmour MI, Schladweiler MC, McClure M, Hays M, Kodavanti UP. 2009. Differential pulmonary retention of diesel exhaust particles in Wistar Kyoto and spontaneously hypertensive rats. Toxicol Sci. 111(2):392–401.
  • Schuhmacher A, Lennertz L, Wagner M, Höfels S, Pfeiffer U, Guttenthaler V, Maier W, Zobel A, Mössner R. 2013. A variant of the neuronal amino acid transporter SLC6A15 is associated with ACTH and cortisol responses and cognitive performance in unipolar depression. Int J Neuropsychopharmacol. 16(1):83–90.
  • Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. 2018. Neuroendocrine regulation of air pollution health effects: emerging insights. Toxicol Sci. 164(1):9–20.
  • Snow SJ, McGee MA, Henriquez A, Richards JE, Schladweiler MC, Ledbetter AD, Kodavanti UP. 2017. Respiratory effects and systemic stress response following acute acrolein inhalation in rats. Toxicol Sci. 158(2):454–464.
  • Sobolewski M, Anderson T, Conrad K, Marvin E, Klocke C, Morris-Schaffer K, Allen JL, Cory-Slechta DA. 2018. Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: risk for children's sex-biased neurobehavioral disorders. Neurotoxicology. 68:203–211.
  • Stevens T, Hester S, Gilmour MI. 2010. Differential transcriptional changes in mice exposed to chemically distinct diesel samples. Biomed Inform Insights. 3:29–52.
  • Sternberg EM. 2006. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 6(4):318–28.
  • Takano H, Ichinose T, Miyabara Y, Yoshikawa T, Sagai M. 1998. Diesel exhaust particles enhance airway responsiveness following allergen exposure in mice. Immunopharmacol Immunotoxicol. 20(2):329–336.
  • Thomson EM, Filiatreault A, Guénette J. 2019. Stress hormones as potential mediators of air pollutant effects on the brain: Rapid induction of glucocorticoid-responsive genes. Environ Res. 178:108717.
  • Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. 2013. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 10(9):3886–3907.
  • van Eeden SF, Tan WC, Suwa T, Mukae H, Terashima T, Fujii T, Qui D, Vincent R, Hogg JC. 2001. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). Am J Respir Crit Care Med. 164(5):826–830.
  • Walsh CP, Bovbjerg DH, Marsland AL. 2021. Glucocorticoid resistance and β2-adrenergic receptor signaling pathways promote peripheral pro-inflammatory conditions associated with chronic psychological stress: a systematic review across species. Neurosci Biobehav Rev. 128:117–135.
  • Xing YF, Xu YH, Shi MH, Lian YX. 2016. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 8(1):E69–E74.
  • Xu X, Liu C, Xu Z, Tzan K, Zhong M, Wang A, Lippmann M, Chen L-C, Rajagopalan S, Sun Q, et al. 2011. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol Sci. 124(1):88–98.
  • Zannas AS, Wiechmann T, Gassen NC, Binder EB. 2016. Gene–stress–epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology. 41(1):261–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.