196
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients

, , , , , & show all
Pages 76-87 | Received 17 Jan 2017, Accepted 11 Jul 2017, Published online: 27 Jul 2017

References

  • Agaugue S, Marcenaro E, Ferranti B, Moretta L, Moretta A. 2008. Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells. Blood 112:1776–1783.
  • Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.
  • Baserga R. 1995. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 55:249–252.
  • Bezman NA, Cedars E, Steiner DF, Blelloch R, Hesslein DG, Lanier LL. 2010. Distinct requirements of microRNAs in NK cell activation, survival, and function. J Immunol 185:3835–3846.
  • Boissel N, Rea D, Tieng V, Dulphy N, Brun M, Cayuela JM, Rousselot P, et al. 2006. BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J Immunol 176:5108–5116.
  • Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, et al. 2008. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 129:428–437.
  • Di Santo JP. 2008. Natural killer cells: diversity in search of a niche. Nat Immunol 9:473–475.
  • El Tayebi HM, Hosny KA, Esmat G, Breuhahn K, Abdelaziz AI. 2012. miR-615-5p is restrictedly expressed in cirrhotic and cancerous liver tissues and its overexpression alleviates the tumorigenic effects in hepatocellular carcinoma. FEBS Lett 586:3309–3316.
  • El Tayebi HM. 2014. Transcriptional activation of IGF-II/IGF-1R axis and inhibition of IGFBP-3 by miR-155 in hepatocellular carcinoma. Oncol Lett 10:3206–3212.
  • Farag SS, VanDeusen JB, Fehniger TA, Caligiuri MA. 2003. Biology and clinical impact of human natural killer cells. Int J Hematol 78:7–17.
  • Gao H, Deng H, Xu H, Yang Q, Zhou Y, Zhang J, Zhao D, Liu F. 2016. MicroRNA-223 promotes mast cell apoptosis by targeting the insulin-like growth factor 1 receptor. Exp Ther Med 11:2171–2176.
  • Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, Liang H, et al. 2016. Failure recovery of circulating NKG2D + CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology 5:e1048061.
  • Ge YY, Shi Q, Zheng ZY, Gong J, Zeng C, Yang J, Zhuang SM. 2014. MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R. Oncotarget 5:6218–6228.
  • Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T. 2007. The trafficking of natural killer cells. Immunol Rev 220:169–182.
  • Hayakawa Y, Screpanti V, Yagita H, Grandien A, Ljunggren HG, Smyth MJ, Chambers BJ. 2004. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol 172:123–129.
  • Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T. 2006. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 43:362–372.
  • Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, Sykora KW, Schmidt RE. 2001. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31:3121–3127.
  • Jacobs R, Stoll M, Stratmann G, Leo R, Link H, Schmidt RE. 1992. CD16- CD56+ natural killer cells after bone marrow transplantation. Blood 79:3239–3244.
  • Jamitzky S, Krueger AC, Janneschuetz S, Piepke S, Kailayangiri S, Spurny C, Rossig C, Altvater B. 2015. Insulin-like growth factor-1 receptor (IGF-1R) inhibition promotes expansion of human NK cells which maintain their potent antitumor activity against Ewing sarcoma cells. Pediatr Blood Cancer 62:1979–1985.
  • Ji T, Li G, Chen J, Zhao J, Li X, Lin H, Cai X, Cang Y. 2016. Distinct role of interleukin-6 and tumor necrosis factor receptor-1 in oval cell- mediated liver regeneration and inflammation-associated hepatocarcinogenesis. Oncotarget 7:66635–66646.
  • Jiang W, Zhang C, Tian Z, Zhang J. 2014. hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo. Immunobiology 219:547–553.
  • Jost S, Altfeld M. 2013. Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194.
  • Kooijman R, Willems M, De Haas CJ, Rijkers GT, Schuurmans AL, Van Buul-Offers SC, Heijnen CJ, Zegers BJ. 1992. Expression of type I insulin-like growth factor receptors on human peripheral blood mononuclear cells. Endocrinology 131:2244–2250.
  • Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim O, Rachmilewitz J. 2015. Characterization of tumor infiltrating natural killer cell subset. Oncotarget 6:13835–13843.
  • Lund P, Schubert D, Niketeghad F, Schirmacher P. 2004. Autocrine inhibition of chemotherapy response in human liver tumor cells by insulin-like growth factor-II. Cancer Lett 206:85–96.
  • Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–1274.
  • Martin DC, Fowlkes JL, Babic B, Khokha R. 1999. Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1. J Cell Biol 146:881–892.
  • Nagler A, Lanier LL, Cwirla S, Phillips JH. 1989. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143:3183–3191.
  • Ni F, Sun R, Fu B, Wang F, Guo C, Tian Z, Wei H. 2013. IGF-1 promotes the development and cytotoxic activity of human NK cells. Nat Commun 4:1479.
  • Pollak MN, Schernhammer ES, Hankinson SE. 2004. Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518.
  • Su R, Dong Zou L, Zhao D, Ren H, Li Y, Yi F, Li P, et al. 2016. microRNA-23a, -27a and -24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia. Oncogene 35:6001–6014.
  • Thomas MF, Abdul-Wajid S, Panduro M, Babiarz JE, Rajaram M, Woodruff P, Lanier LL, et al. 2012. Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood 120:130–142.
  • Trinchieri G. 1989. Biology of natural killer cells. Adv Immunol 47:187–376.
  • Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, Liu L, et al. 2016. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett 371:171–181.
  • Yadav A, Kalita A, Dhillon S, Banerjee K. 2005. JAK/STAT3 pathway is involved in survival of neurons in response to insulin-like growth factor and negatively regulated by suppressor of cytokine signaling-3. J Biol Chem 280:31830–31840.
  • Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, Lu H, et al. 2003. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest 111:265–273.
  • Youness RA, Rahmoon MA, Assal RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI. 2016. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 34:128–140.
  • Zhang QF, Yin W, Xia WY, Yi YY, He Q, Wang F, Ren XH, Zhang DZ. 2016. Liver-infiltrating CD11b-CD27- NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol. Epub ahead of print. doi: 10.1038/cmi.2016.28
  • Zhang W, Liu K, Liu S, Ji B, Wang Y, Liu Y. 2015. MicroRNA-133a functions as a tumor suppressor by targeting IGF-1R in hepatocellular carcinoma. Tumour Biol 36:9779–9788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.