98
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Transplantation of stromal-derived factor 1α and basic fibroblast growth factor primed insulin-producing cells reverses hyperglycaemia in diabetic rats

, , , , &
Pages 88-99 | Received 01 Dec 2016, Accepted 31 Jul 2017, Published online: 24 Aug 2017

References

  • Aali E, Mirzamohammadi S, Ghaznavi H, Madjd Z, Larijani B, Rayegan S, Sharifi AM. 2014. A comparative study of mesenchymal stem cell transplantation with its paracrine effect on control of hyperglycemia in type 1 diabetic rats. J Diabetes Metab Disord 13:76.
  • Abouzaripour M, Ragerdi Kashani I, Pasbakhsh P, Atlasy N. 2015. Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus. Avicenna J Med Biotechnol 7:22–31.
  • Ahmed MR, Mehmood A, Bhatti FU, Khan SN, Riazuddin S. 2014. Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage. Osteoarth Cart 22:1894–1901.
  • Ali G, Mohsin S, Khan M, Nasir GA, Shams S, Khan SN, Riazuddin S. 2012. Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. J Transl Med 10:75.
  • Ali M, Mehmood A, Anjum MS, Tarrar MN, Khan SN, Riazuddin S. 2015. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy. Mol Cell Biochem 410:267–279.
  • American Diabetes Association. 2010. Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69.
  • Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL. 2003. Growth factors in the treatment of diabetic foot ulcers. Br J Surg 90:133–146.
  • Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW. 2011. Inhibition of SDF-1α further impairs diabetic wound healing. J Vasc Surg: Off Publ Soc Vasc Surg Int Soc Cardiovasc Surg N Am Chap 53:774–784.
  • Bhansali S, Kumar V, Saikia UN, Medhi B, Jha V, Bhansali A, Dutta P. 2015. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Ind J Med Res 142:63–71.
  • Biase FH, Franco MM, Goulart LR, Antunes RC. 2002. Protocol for extraction of genomic DNA from swine solid tissues. Genet Mol Biol 25:313–315.
  • Cai L, Keller BB. 2014. Cardiac regeneration and diabetes. Regen Med Res 2:1.
  • De Lisle Robert C. 2014. Isolation of Pancreatic RNA. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2014.9
  • Dinić S, Grdović N, Uskoković A, Đorđević M, Mihailović M, Jovanović JA, Vidaković M. 2016. CXCL12 protects pancreatic β-cells from oxidative stress by a Nrf2-induced increase in catalase expression and activity. Proc Jpn Acad Ser B: Phys Biol Sci 92:436–454.
  • Estrada JC, Torres Y, Benguria A, Dopazo A, Roche E, Carrera-Quintanar L, Perez RA, et al. 2013. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis 4:e691.
  • Ezquer M, Arango-Rodriguez M, Giraud-Billoud M, Ezquer F. 2014. Mesenchymal stem cell therapy in type 1 diabetes mellitus and its main complications: from experimental findings to clinical practice. J Stem Cell Res Ther 4:227.
  • Falcao-Pire I, Leite-Moreira AF. 2012. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344.
  • Frances DE, Ronco MT, Monti JA, Ingaramo PI, Pisani GB, Parody JP, Pellegrino JM, et al. 2010. Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: New insights into the insulin effect. J Endocrinol 205:187–200.
  • Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Abou-El-Mahasen MA, Ashamallah SA, Ghoneim MA. 2013. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 22:133–145.
  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. 2014. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149.
  • Guimarães ET, Cruz Gd S, Farias de Almeida T, Solano de Freitas Souza B, Kaneto CM, Vasconcelos JF, Conrado dos Santos WL, et al. 2013. Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model. Cell Transplant 22:2345–2354.
  • Hashemian SJ, Kouhnavard M, Nasli-Esfahani E. 2015. Mesenchymal stem cells: Rising concerns over their application in treatment of type one diabetes mellitus. J Diabetes Res 2015:19.
  • Hua X, Wang Y, Tang Y, Yu S, Jin S, Meng X, Li H, et al. 2014. Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes. PLoS One 9:e102198.
  • Khan M, Akhtar S, Mohsin S, Khan NS, Riazuddin S. 2011. Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20:67–75.
  • Khan M, Ali F, Mohsin S, Akhtar S, Mehmood A, Choudhery MS, Khan SN, Riazuddin S. 2013. Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 4:58.
  • Khorsandi L, Saremy S, Khodadadi A, Dehbashi F. 2016. Effects of Exendine-4 on the differentiation of insulin producing cells from rat adipose-derived mesenchymal stem cells. Cell J17 720–729.
  • Kim JH, Kim KS, Lee SW, Kim HW, Joo DJ, Kim YS, Suh H. 2015. Retinoic acid-induced differentiation of rat mesenchymal stem cells into β-cell lineage. J Korean Soc Transplant 29:118–129.
  • Kim SC, Han DJ, Lee JY. 2010. Adipose tissue derived stem cells for regeneration and differentiation into insulin-producing cells. Curr Stem Cell Res Ther 5:190–194.
  • Li G, Huang LS, Jiang MH, Wu HL, Chen J, Huang Y, Shen Y, et al. 2010. Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats. Acta Pharmacol Sin 31:1454–1463.
  • Li JH, Zhang N, Wang JA. 2011. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 31:103–110.
  • Liu Y, Cai S, Shu XZ, Shelby J, Prestwich GD. 2007. Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regener: Off Publ Wound Heal Soc Eur Tissue Repair So 15:245–251.
  • Lu G, Haider HK, Jiang S, Ashraf M. 2009. Sca-1+ stem cell survival and engraftment in the infarcted heart: Dual role for preconditioning-induced connexin-43. Circulation 119:2587–2596.
  • Márquez-Aguirre AL, Canales-Aguirre AA, Padilla-Camberos E, Esquivel-Solis H, Díaz-Martínez NE. 2015. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy. Braz J Med Biol Res 48:765–776.
  • Mizuno K, Yamamura K, Yano K, Osada T, Saeki S, Takimoto N, Sakurai T, Nimura Y. 2003. Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res Part A 64:177–181.
  • Nawrocka D, Kornicka K, Szydlarska J, Marycz K. 2017. Basic fibroblast growth factor inhibits apoptosis and promotes proliferation of adipose-derived mesenchymal stromal cells isolated from patients with type 2 diabetes by reducing cellular oxidative stress. Oxid Med Cell Longev 2017:3027109.
  • Oh K, Kim SR, Kim DK, Seo MW, Lee C, Lee HM, Oh JE, et al. 2015. In vivo differentiation of therapeutic insulin-producing cells from bone marrow cells via extracellular vesicle-mimetic nanovesicles. ACS Nano 9:11718–11727.
  • Papatheodorou K, Banach M, Edmonds M, Papanas N, Papazoglou D. 2015. Complications of diabetes. J Diabetes Res 2015. doi:10.1155/2015/189525.
  • Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. 2008. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142.
  • Shi H, Cheng Y, Ye J, Cai P, Zhang J, Li R, Yang Y, et al. 2015. bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through reactive oxygen species production via the PI3K/Akt-Rac1-JNK pathways. Int J Biol Sci 11:845–859.
  • Song H, Yoon C, Kattman SJ, Dengler J, Masse S, Thavaratnam T, Gewarges M, et al. 2010. Interrogating functional integration between injected pluripotent stem cell derived cells and surrogate cardiac tissue. Proc Natl Acad Sci 107:3329–3334.
  • Takeda N, Manabe I. 2011. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam 2011:535241.
  • Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, et al. 2010. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120:254–265.
  • Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X, Guo LY, et al. 2011. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 91:402–411.
  • Tariq M, Masoud MS, Mehmood A, Khan SN, Riazuddin S. 2013. Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats. J Transl Med 11:115.
  • Van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, et al. 2009. Cardiac myosin binding protein C mutations and hypertrophic cardiomyopathy: Haplo insufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473–1483.
  • Vidaković M, Grdović N, Dinić S, Mihailović M, Uskoković A, ArambašićJovanović J. 2015. The importance of the CXCL12/CXCR4 axis in therapeutic approaches to diabetes mellitus attenuation. Front Immunol 6:403.
  • Wagener FA, Dekker D, Berden JH, Scharstuhl A, Vander VJ. 2009. The role of reactive oxygen species in apoptosis of the diabetic kidney. Apoptosis 14:1451–1458.
  • Wang G, Li Y, Wang YU, Dong YU, Wang F-S, Ding YI, Kang Y, Xu X. 2014. 'Roles of the co-culture of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells with rat pancreatic cells in the treatment of rats with diabetes mellitus'. Exp Ther Med 8:1389–1396.
  • Xiao J, Lv Y, Lin S, Jin L, Zhang Y, Wang X, Ma J, et al. 2010. Cardiac protection by basic fibroblast growth factor from ischemia/reperfusion-induced injury in diabetic rats. Biol Pharm Bull 33:444–449.
  • Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, Tan Y, et al. 2016. Insulin-producing cells differentiated from human bone marrow mesenchymal stem cells in vitro ameliorate streptozotocin-induced diabetic hyperglycemia. PLoS One 11:e0145838.
  • Yano T, Liu Z, Donovan J, Thomas MK, Habener JF. 2007. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes 56:2946–2957.
  • Youssef A, Aboalola D, Han VKM. 2017. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int 2017:9453108.
  • Yu YB, Bian JM, Gu DH. 2015. Transplantation of insulin-producing cells to treat diabetic rats after 90% pancreatectomy. World J Gastroenterol: WJG 21:6582–6590.
  • Zhang S, Dai H, Wan N, Moore Y, Dai Z. 2011a. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes. PLoS One 6:e29706.
  • Zhang Y, Ren Z, Zou C, Wang S, Luo B, Li F, Liu S, Zhang YA. 2011b. Insulin producing cells from human pancreatic islet-derived progenitor cells following transplantation in mice. Cell Biol Int 35:483–490.
  • Zhou Y, Hu Q, Chen F, Zhang J, Guo J, Wang H, Gu J, et al. 2015. 'Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets'. Dis Models Mech 8:1625–1633.
  • Zhu W, Chen J, Cong X, Hu S, Chen X. 2006. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24:416–425.
  • Zuk PA. 2010. The adipose-derived stem cell: Looking back and looking ahead. Mol Biol Cell 21:1783–1787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.