612
Views
72
CrossRef citations to date
0
Altmetric
Research Article

Nonlamellar liquid crystalline nanostructured particles: advances in materials and structure determination

, &
Pages 12-28 | Received 04 Dec 2008, Accepted 09 Dec 2008, Published online: 01 Mar 2009

References

  • Abraham T, Hato M, Hirai M. (2004). Glycolipid based cubic nanoparticles: preparation and structural aspects. Coll Surf Biointerf 35:107–717.
  • Abraham T, Hato M, Hirai M. (2005). Polymer-dispersed bicontinuous cubic glycolipid nanoparticles. Biotechnology Progress, 21:255–262.
  • Ali H, Mohammed AR, Smith J, Perrie Y. (2007). ESEM: a possible vehicle for assessing liposome stability? J Pharm Pharmacol 59:31.
  • Almgren M, Borne J, Feitosa E, Khan A, Lindman B. (2007). Dispersed lipid liquid crystalline phases stabilized by a hydrophobically modified cellulose. Langmuir 23:2768–2777.
  • Almgren M, Edwards K, Karlsson G. (2000). Cryo transmission electron microscopy of liposomes and related structures. Coll Surf Physicochem Engineer Aspects 174:3–21.
  • Amar-Yuli D, Garti N. (2005). Transitions induced by solubilized fat into reverse hexagonal mesophases. Coll Surf Biointerf 43:72–82.
  • Amar-Yuli I, Wachtel E, Ben Shoshan E, Danino D, Aserin A, Garti N. (2007). Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir 23:3637–3645.
  • Angelov B, Angelova A, Garamus VM, Lebas G, Lesieur S, et al. (2007). Small-angle neutron and x-ray scattering from amphiphilic stimuli-responsive diamond-type bicontinuous cubic phase. J Am Chem Soc 129:13474–13479.
  • Angelov B, Angelova A, Papahadjopoulos-Sternberg B, Lesieur S, Sadoc JF, Ollivon M, et al. (2006). Detailed structure of diamond-type lipid cubic nanoparticles. J, Am. Chem. Soc 128:5813–5817.
  • Aota-Nakano Y, Li SJ, Yamazaki M. (1999). Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. Biochim Biophys Acta 1461:96–102.
  • Barauskas J, Johnsson M, Johnson F, Tiberg F. (2005a). Cubic phase nanoparticles (Cubosome): Principles for controlling size, structure, and stability. Langmuir 21:2569–2577.
  • Barauskas J, Johnsson M, Nylander T, Tiberg F. (2006). Hexagonal liquid-crystalline nanoparticles in aqueous mixtures of glyceryl monooleyl ether and pluronic F(127). Chem Lett 35:830–831.
  • Barauskas J, Johnsson M, Tiberg F. (2005b). Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett 5:1615–1619.
  • Barauskas J, Landh T. (2003). Phase behaviour of the phytantriol/water system. Langmuir 19:9562–9565.
  • Barauskas J, Svedaite I, Butkus E, Razumas V, Larsson K, Tiberg F. (2005c). Synthesis and aqueous phase behavior of 1-glyceryl monooleyl ether. Coll. Surf Biointerfaces 41:49–53.
  • Borne J, Nylander T, Khan A. (2003). Vesicle formation and other structures in aqueous dispersions of monoolein and sodium oleate. J Coll Interface Sci 257:310–320.
  • Boyd BJ, Davey G, Drummond CJ, Hartley P, Fong C, Krodkiewska I, et al. (2004). Surfactants and Lyotropic Phases Formed Therefrom. International Patent WO 2004/022530:March. (2004).
  • Boyd BJ, Rizwan SB, Dong YD, Hook S, Rades T. (2007). Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms. Langmuir 23:12461–12464.
  • Boyd BJ, Whittaker DV, Khoo SM, Davey G. (2006). Hexosomes formed from glycerate surfactants: formulation as a colloidal carrier for irinotecan. Int J Pharm 318:154–162.
  • Buchheim W, Larsson K. (1987). Cubic lipid-protein-water phases. J Coll Interface Sci 117:582–583.
  • Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M. (2000). Phase behaviour of a monoacylglycerol (Myverol 18–99K)/water system. Chem Phys Lipids 107:191–220.
  • Cullis PR, De Kruijff B. (1978). The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Biochim Biophy Acta (BBA) Biomembr 513:31–42.
  • Czeslik C, Winter R, Rapp G, Bartels K. (1995). Temperature-dependent and pressure-dependent phase-behavior of monoacylglycerides monoolein and monoelaidin. Biophys J 68:1423–1429.
  • de Campo L, Yaghmur A, Sagalowicz L, Leser ME, Watzke H, Glatter O. (2004). Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 20:5254–5261.
  • Dimitrova GT, Tadros TF, Luckham PF, Kipps MR. (1996). Investigations into the phase behavior of nonionic ethoxylated surfactants using H-2 NMR spectroscopy. Langmuir 12:315–318.
  • Dong YD, Larson I, Hanley T, Boyd BJ. (2006). Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir 22:9512–9518.
  • Drummond CJ, Fong C. (1999). Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Coll Interface Sci 4:449–456.
  • Fong C, Krodkiewska I, Wells D, Boyd BJ, Booth J, Bhargava S, et al. (2005). Submicron dispersions of hexosomes based on novel glycerate surfactants. Aust J Chem 58:683–687.
  • Fong C, Wells D, Krodkiewska I, Booth J, Hartley PG. (2007). Synthesis and mesophases of glycerate surfactants. J Phys Chem B 111:1384–1392.
  • Fong C, Wells D, Krodkiewska I, Hartley PG, Drummond CJ. (2006). New role for urea as a surfactant headgroup promoting self- assembly in water. Chem Mater 18:594–597.
  • Gabke A, Kraineva J, Kohling R, Winter R. (2005). Using pressure in combination with ray and neutron scattering techniques for studying the structure, stability, and phase behaviour of soft condensed matter and biomolecular systems. J Phy Condensed Matter 17:S3077–S3092.
  • Gradzielski M. (2004). Investigations of the dynamics of morphological transitions in amphiphilic systems. Curr Opin Coll Interface Sci 9:256–263.
  • Graham Shipley G, Green JP, Nichols BW. (1973). The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta Biomemb 311:531–544.
  • Gruner SM, Tate MW, Kirk GL, So PTC, Turner DC, Keane DT, et al. (1988). X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine. Biochemistry, 27:2853–2866.
  • Gulikkrzywicki T, Delacroix H. (1994). Combined use of freeze- fracture electron-microscopy and X-ray diffraction for the structure determination of 3-dimensionally ordered specimens. Biol Cell 80:193–201.
  • Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. (1996). Cubic lipid-water phase dispersed into submicron particles. Langmuir 12:4611–4613.
  • Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. (1997). Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 13:6964–6971.
  • Hafez IM, Cullis PR. (2001). Roles of lipid polymorphism in intracellular delivery. Adv. Drug Deliv Rev 47:139–148.
  • Hato M, Minamikawa H, Salkar RA, Matsutani S. (2002). Alkylglycosides with an lsoprenoid-type hydrophobic chain can afford greater control of aqueous phase structures at low temperatures. Langmuir 18:3425–3429.
  • Hato M, Minamikawa H, Tamada K, Baba T, Tanabe Y. (1999). Self-assembly of synthetic glycolipid/water systems. Adv Coll Inter Sci 80:233–270.
  • Hato M, Yamashita I, Kato T, Abe Y. (2004). Aqueous phase behavior of a 1-O-phytanyl-beta-D-xyloside/water system. Glycolipid-based bicontinuous cubic phases of crystallographic space groups Pn3m and Ia3d. Langmuir 20:11366–11373.
  • Hyde ST. (2001). Identification of lyotropic liquid crystalline mesophases. In: Holmberg K, ed. Handbook of Applied Science and Colloid Chemistry. ( pp 299–332) New York: John Wiley & Sons Ltd.
  • Imberg A, Evertsson H, Stilbs P, Kriechbaum M, Engstrom S. (2003). On the self-assembly of monoolein in mixtures of water and a polar aprotic solvent. J Phys Chem 107:2311–2318.
  • Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, et al. (2007). Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–1663.
  • Johnsson M, Barauskas J, Tiberg F. (2005a). Cubic phases and cubic phase dispersions in a phospholipid-based system. J Am Chem Soc 127:1076–1077.
  • Johnsson M, Lam Y, Barauskas J, Tiberg F. (2005b). Aqueous phase behavior and dispersed nanoparticles of diglycerol monooleate/glycerol dioleate mixtures. Langmuir 21:5159–5165.
  • Kaasgaard T, Drummond CJ. (2006). Ordered 2-D and 3-D nano structured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys 8:4957–4975.
  • Kaler EW, Herrington KL, Murthy AK, Zasadzinski JAN. (1992). Phase-behavior and structures of mixtures of anionic and cationic surfactants. J Phy Chem 96:6698–6707.
  • Landh T. (1994). Phase behavior in the system pine needle oil monoglycerides-poloxamer 407-water at 20°C. J Phys Chem 98:8453–8467.
  • Larsson K. (1989). Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem 93:7304–7314.
  • Larsson K. (1999). Colloidal dispersions of ordered lipid-water phases. J Disp Sci Tech 20:27–34.
  • Laughlin RG, Munyon RL. (1987). Diffusive interfacial transport: a new approach to phase studies. J Phys Chem 91:3299–3305.
  • Lichtenberg D, Opatowski E, Kozlov MM. (2000). Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim Biophys Acta Biomembr 1508:1–19.
  • Lindblom G, Oradd G. (1994). Nmr-studies of translational diffusion in lyotropic liquid-crystals and lipid-membranes. Progr Nucl Magn Reson Spectros 26:483–515.
  • Ljusberg-Wahren H, Nyberg L, Larsson K. (1996). Dispersion of the cubic liquid crystalline phase: structure preparation and functionality aspects. Chim Oggi 14:40–43.
  • Lynch ML, Kochvar KA, Burns JL, Laughlin RG. (2000). Aqueous-phase behavior and cubic phase-containing emulsions in the C12E2-water system. Langmuir 16:3537–3542.
  • Malmsten M. (2006). Soft drug delivery systems. Soft Matter 2:760–769.
  • Malmsten M. (2007). Phase transformations in self-assembly systems for drug delivery applications. J Disp Sci Tech 28:63–72.
  • McNeil SE, Perrie Y. (2007). Effect of the liposomal morphological phase and liposome-DNA complex size on in vitro DNA transfection. J Pharm Pharmacol 59:88.
  • Mele S, Murgia S, Caboi F, Monduzzi A. (2004). Biocompatible lipidic formulations: phase behavior and microstructure. Langmuir 20:5241–5246.
  • Minamikawa H, Hato M. (1997). Phase behaviour of synthetic phytanyl-chained glycolipid/water systems. Langmuir 13:2564–2571.
  • Minamikawa H, Hato M. (1998). Reverse micellar cubic phase in a phytanyl-chained glucolipid/water system. Langmuir 14:4503–4509.
  • Momot KI, Kuchel PW, Whittaker D. (2004). Enhancement of Na+ diffusion in a bicontinuous cubic phase by the ionophore monensin. Langmuir 20:2660–2666.
  • Monduzzi M, Ljusberg-Wahren H, Larsson K. (2000). A 13C NMR study of aqueous dispersions of reversed lipid phases. Langmuir 16:7355–7358.
  • Muller RH, Mader K, Gohla S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Euro J Pharm Biopharm 50:161–177.
  • Nakano M, Sugita A, Matsuoka H, Handa T. (2001). Small-angle X-ray scattering and 13C NMR investigation on the internal structure of cubosomes. Langmuir 17:3917–3922.
  • Nakano M, Teshigawara T, Sugita A, Leesajakul W, Taniguchi A, Kamo T, et al. (2002). Dispersions of liquid crystalline phases of the monoolein/oleic acid/pluronic F127 system. Langmuir 18:9283–9288.
  • Neto C, Aloisi G, Baglioni P, Larsson K. (1999). Imaging soft matter with the atomic force microscope: cubosomes and hexosomes. J Phys Chem 103:3896–3899.
  • Nilsson A, Holmgren A, Lindblom G. (1994). An FT-IR study of the hydration and molecular ordering at phase-transitions in the monooleoylglycerol water-system. Chem Phys Lipids 71:119–131.
  • Nylander T, Mattisson C, Razumas V, Miezis Y, Hakansson B. (1996). A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Coll Surf A Physicochem Engineer Aspects 114:311–320.
  • Perrie Y, Mohammed AUR, Vangala A, McNeil SE. (2007). Environmental scanning electron microscopy offers real-time morphological analysis of liposomes and niosomes. J Liposome Res 17:27–37.
  • Pitzalis P, Monduzzi M, Krog N, Larsson H, Ljusberg-Wahren H, Nylander T. (2000). Characterization of the liquid-crystalline phases in the glycerol monooleate/diglycerol monooleate/water system. Langmuir 16:6358–6365.
  • Popescu G, Barauskas J, Nylander T, Tiberg F. (2007). Liquid crystalline phases and their dispersions in aqueous mixtures of glycerol monooleate and glyceryl monooleyl ether. Langmuir 23:496–503.
  • Rangelov S, Almgren M. (2005). Particulate and bulk bicontinuous cubic phases obtained from mixtures of glyceryl mono-oleate and copolymers bearing blocks of lipid-mimetic anchors in water. J Phys Chem 109:3921–3929.
  • Razumas V, Larsson K, Miezis Y, Nylander T. (1996). A cubic mono-olein cytochrome c water phase: X-ray diffraction, FT-IR, differential scanning calorimetric, and electrochemical studies. J Phys Chem 100:11766–11774.
  • Razumas V, Talaikyte Z, Barauskas J, Larsson K, Miezis Y, Nylander T. (1996). Effects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase: X-ray diffraction and Raman scattering studies. Chem Phys Lipids 84:123–138.
  • Rizwan SB, Dong YD, Boyd BJ, Rades T, Hook S. (2007). Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38 478–485.
  • Rosa M, RosaInfante M, Miguel MdG,Lindman B. (2006). Spontaneous formation of vesicles and dispersed cubic and hexagonal particles in amino acid-based catanionic surfactant systems. Langmuir 22:5588–5596.
  • Rosevear FB. (1954). The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Amer Oil Chem Soc 31:628–639.
  • Rosevear FB. (1968). Liquid crystals: the mesomorphic phases of surfactant compositions. J Soc Cosmetic Chem 19:581–594.
  • Sagalowicz L, Michel M, Adrian M, Frossard P, Rouvet M, Watzke HJ. (2006). Crystallography of dispersed liquid crystalline phases studded by cryo-transmission on electron microscopy. J Micros Oxford 221:110–121.
  • Salkar RA, Minamikawa H, Hato M. (2004). Alkylglucosides with isoprenoid-type hydrophobic chains-effects of hydrophobic chain size on the aqueous phase behavior. Chem. Phys. Lipids, 127:65–75.
  • Salonen A, Guillot S, Glatter O. (2007). Determination of water content in internally self-assembled monoglyceride-based dispersions from the bulk phase. Langmuir 23:9151–9154.
  • Schurtenberger P, Mazer N, Kaenzig W. (1985). Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. J Phys Chem 89:1042–1049.
  • Segota S, Tezak D. (2006). Spontaneous formation of vesicles. Adv Coll Interface Sci 121:51–75.
  • Shah JC, Sadhale Y, Chilukuri DM. (2001). Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47:229–250.
  • Siekmann B, Bunjes H, Koch MM. H,Westesen K. (2002). Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm 244:33–43.
  • Spicer PT. (2004). Cubosomes: bicontinuous cubic liquid crystalline nanostructured particles. Encyclopedia of Nanoscience and Nanotechnology ( pp 881–892), Marcel Dekker.
  • Spicer PT. (2005). Progress in liquid crystalline dispersions: cubosomes. Curr Opin Coll Interf Sci 10:274–279.
  • Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. (2001). Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 17:5748–5756.
  • Spicer PT, Small WB, Lynch ML, Burns JL. (2002). Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res 4:297–311.
  • Tamayo-Esquivel D, Ganem-Quintanar A, Martinez AL, Navarrete-Rodriguez M, Rodriguez-Romo S, Quintanar-Guerrero D. (2006). Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J Nanosci Nanotech 6:3134–3138.
  • Tenchov B, MacDonald RC, Siegel DP. (2005). Inverted bicontinuous cubic phases in unsaturated PC/cholesterol mixtures: A dual role for cholesterol in fusion and raft formation? Biophys J 88:68A–68A.
  • Tenchov BG, MacDonald RC, Siegel DP. (2006). Cubic phases in phosphatidylcholine-cholesterol mixtures: cholesterol as membrane “fusogen”. Biophys J 91:2508–2516.
  • Wacker M, Schubert R. (1998). From mixed micelles to liposomes: critical steps during detergent removal by membrane dialysis. Int J Pharm 162:171–175.
  • Wang X, Danoff EJ, Sinkov NA, Lee JH, Raghavan SR, English DS. (2006). Highly efficient capture and long-term encapsulation of dye by catanionic surfactant vesicles. Langmuir 22:6461–6464.
  • Wang XY, Quinn PJ. (2002). Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine. Biochim Biophys Acta Biomembr 1564:66–72.
  • Wieslander A, Rilfors L, Johansson LB. A,Lindblom G. (1981). Reversed cubic phase with membrane glucolipids from acholeplasma-laidlawii - H-1, H-2, and diffusion nuclear magnetic-resonance measurements. Biochemistry 20: 730–735.
  • Woerle G, Drechsler M, Koch MHJ, Siekmann B, Westesen K, Bunjes H. (2007). Influence of composition and preparation parameters on the properties of aqueous mono-olein dispersions. Int J Pharm 329:150–157.
  • Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O. (2005). Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 21:569–577.
  • Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O. (2006a). Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir 22:9919–9927.
  • Yaghmur A, de Campo L, Salentinig S, Sagalowicz L, Leser ME, Glatter O. (2006b). Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir 22:517–521.
  • Yaghmur A, Laggner P, Sartori B, Rappolt M. (2008). Calcium triggered Lα-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS. PLoS ONE 3:e2072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.