242
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 203-218 | Received 31 Dec 2022, Accepted 30 May 2023, Published online: 20 Jun 2023

References

  • Abdulbaqi, I.M., et al., 2018. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug design, development and therapy, 12, 795–813. doi: 10.2147/DDDT.S158018.
  • Abdulbaqi, I.M., et al., 2016. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. International journal of nanomedicine, 11, 2279–2304. doi: 10.2147/IJN.S105016.
  • Agrawal, S.J.T.I.B., 1996. Antisense oligonucleotides: towards clinical trials. Trends in biotechnology, 14 (10), 376–387. doi: 10.1016/0167-7799(96)10053-6.
  • Ahad, A., et al., 2013. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: statistical optimization, characterization and pharmacokinetic assessment. International journal of pharmaceutics, 443 (1–2), 26–38. doi: 10.1016/j.ijpharm.2013.01.011.
  • Ahad, A., et al., 2016. The ameliorated longevity and pharmacokinetics of valsartan released from a gel system of ultradeformable vesicles. Artificial cells, nanomedicine, and biotechnology, 44 (6), 1457–1463. doi: 10.3109/21691401.2015.1041638.
  • Alavi, M., Karimi, N., and Safaei, M., 2017. Application of various types of liposomes in drug delivery systems. Advanced pharmaceutical bulletin, 7 (1), 3–9. doi: 10.15171/apb.2017.002.
  • Albash, R., et al., 2019. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. International journal of nanomedicine, 14, 1953–1968. doi: 10.2147/IJN.S196771.
  • Ali, J., et al., 2022. Transethosomes: a breakthrough system for transdermal and topical drug delivery: transethosomes for transdermal and topical drug delivery. Pakistan biomedical journal, 5, 354–357. doi: 10.54393/pbmj.v5i7.578.
  • Anwar, E., Ramadon, D., and Ardi, G.D., 2018. Novel transethosome containing green tea (Camellia Sinensis L. Kuntze) leaf extract for enhanced skin delivery of epigallocatechin gallate: formulation and in vitro penetration test. International journal of applied pharmaceutics, 10 (1), 299–302. doi: 10.22159/ijap.2018.v10s1.66.
  • Ascenso, A., et al., 2015. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. International journal of nanomedicine, 10, 5837–5851. doi: 10.2147/IJN.S86186.
  • Ashtikar, M., Nagarsekar, K., and Fahr, A., 2016. Transdermal delivery from liposomal formulations–evolution of the technology over the last three decades. Journal of controlled release: official journal of the controlled release society, 242, 126–140. doi: 10.1016/j.jconrel.2016.09.008.
  • Azizah, N., Sagita, E., and Iskandarsyah, I., 2017. In vitro penetration tests of transethosome gel preparations containing capsaicin. International journal of applied pharmaceutics, 9, 116–119. doi: 10.22159/ijap.2017.v9s1.68_75.
  • Bajaj, K.J., Parab, B.S., and Shidhaye, S.S., 2021. Nano-transethosomes: a novel tool for drug delivery through skin. Indian journal of pharmaceutical education and research, 55 (1s), S1–S10. doi: 10.5530/ijper.55.1s.33.
  • Balata, G.F., et al., 2020. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery. Journal of drug delivery science and technology, 60, 101921. doi: 10.1016/j.jddst.2020.101921.
  • Barupal, A., Gupta, V., and Ramteke, S., 2010. Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian journal of pharmaceutical sciences, 72 (5), 582–586. doi: 10.4103/0250-474X.78524.
  • Benson, H.A., 2005. Transdermal drug delivery: penetration enhancement techniques. Current drug delivery, 2 (1), 23–33. doi: 10.2174/1567201052772915.
  • Brown, M. B. and Williams, A. C., 2019. The art and science of dermal formulation development. Boca Raton, FL: CRC Press.
  • CEVC, G., 1996. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Critical reviews™ in therapeutic drug carrier systems, 13, 257–388.
  • Chen, Z., et al., 2017. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. European journal of pharmaceutical sciences: official journal of the European federation for pharmaceutical sciences, 99, 240–245. doi: 10.1016/j.ejps.2016.12.026.
  • CURR, A., 2005. Transdermal drug delivery: penetration enhancement techniques heather. Drug delivery, 2, 23–33.
  • Denet, A. R., Vanbever, R., and Préat, V., 2004. Skin electroporation for transdermal and topical delivery. Advanced drug delivery reviews, 56 (5), 659–674. doi: 10.1016/j.addr.2003.10.027.
  • Duangjit, S., et al., 2014. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biological and pharmaceutical bulletin, 37 (2), 239–247. doi: 10.1248/bpb.b13-00576.
  • Erdal, M., 2019. Formulation and in vitro characterization of transethosomes for dermal drug delivery. Journal of advanced research in health sciences, 2, 51–59.
  • Faisal, W., Soliman, G.M., and Hamdan, A.M., 2018. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. Journal of liposome research, 28 (1), 14–21. doi: 10.1080/08982104.2016.1239636.
  • Farooq, M., et al., 2022. Fabrication and evaluation of voriconazole loaded transethosomal gel for enhanced antifungal and antileishmanial activity. Molecules, 27 (10), 3347. doi: 10.3390/molecules27103347.
  • Freinkel, R. K. and Woodley, D. T., 2001. The biology of the skin. Boca Raton, FL: CRC Press.
  • Ganga, S., Ramarao, P., and Singh, J., 1996. Effect of Azone on the iontophoretic transdermal delivery of metoprolol tartrate through human epidermis in vitro. Journal of controlled release, 42 (1), 57–64. doi: 10.1016/0168-3659(96)01351-X.
  • Garg, B.J., et al., 2016. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: formulation optimization, in vitro evaluation and preclinical assessment. Journal of drug targeting, 24 (3), 233–246. doi: 10.3109/1061186X.2015.1070855.
  • Garg, V., et al., 2017. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS pharmscitech, 18 (1), 58–71. doi: 10.1208/s12249-016-0489-z.
  • Gill, B., et al., 2012. Emulsomes: an emerging vesicular drug delivery system. Asian journal of pharmaceutics, 6 (2), 87. doi: 10.4103/0973-8398.102930.
  • Godin, B. and Touitou, E., 2003. Ethosomes: new prospects in transdermal delivery. Critical reviews™ in therapeutic drug carrier systems, 20, 63–102.
  • Gondkar, S., Patil, N., and Saudagar, R., 2017a. Formulation development and characterization of drug loaded transethosomes for transdermal delivery. International journal of chemtech research, 10, 535–544.
  • Gondkar, S., Patil, N.R., and Saudagar, R., 2017b. Formulation development and characterization of etodolac loaded transethosomes for transdermal delivery. Research journal of pharmacy and technology, 10 (9), 3049–3057. doi: 10.5958/0974-360X.2017.00541.8.
  • Hasan, M., et al., 2020. Noninvasive transdermal delivery of liposomes by weak electric current. Advanced drug delivery reviews, 154–155, 227–235. doi: 10.1016/j.addr.2020.06.016.
  • Hmingthansanga, V., et al., 2022. Improved topical drug delivery: role of permeation enhancers and advanced approaches. Pharmaceutics, 14 (12), 2818. doi: 10.3390/pharmaceutics14122818.
  • Jain, S., et al., 2007. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. Aaps pharmscitech, 8 (4), 249–257. doi: 10.1208/pt0804111.
  • Jain, V., Lovanshi, R., and Khan, A.I., 2021. Formulation development and evaluation of niosomal gel of tazarotene for treatment of psoriasis. Journal of medical pharmaceutical and allied sciences, 10 (1), 2664–2670. doi: 10.22270/jmpas.v10i1.1030.
  • Jampilek, J., 2013. Transdermal application of drugs and techniques affecting skin barrier. Journal of Bioequivalence & bioavailability, 05 (06), 233–235. doi: 10.4172/jbb.1000164.
  • Jeong, W.Y., et al., 2021. Recent advances in transdermal drug delivery systems: a review. Biomaterials research, 25 (1), 15. doi: 10.1186/s40824-021-00226-6.
  • Jones, D.S. and Moss, G.P., 2010. Themed issue: recent advances in transdermal drug delivery. The journal of pharmacy and pharmacology, 62 (6), 669–670. doi: 10.1211/jpp.62.06.0001.
  • Kalra, N., et al., 2020. Ethosomal drug delivery system: a newer approach. Asian journal of pharmaceutical research and development, 8, 158–162.
  • Kaur, P., et al., 2018. Formulation, systematic optimization, in vitro, ex vivo and stability assessment of transethosome based gel of curcumin. Asian journal of pharmaceutical and clinical research, 11 (14), 41–47. doi: 10.22159/ajpcr.2018.v11s2.28563.
  • Khalid, H., et al., 2022. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. Royal society open science, 9 (10), 220428. doi: 10.1098/rsos.220428.
  • Kim, J. E., et al., 2019. Transformer-ethosomes with palmitoyl pentapeptide for improved transdermal delivery. Journal of drug delivery science and technology, 52, 460–467. doi: 10.1016/j.jddst.2019.04.039.
  • Knudsen, N.Ø. et al., 2012. Calcipotriol delivery into the skin with PEGylated liposomes. European journal of pharmaceutics and biopharmaceutics: official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.V, 81 (3), 532–539. doi: 10.1016/j.ejpb.2012.04.005.
  • Kováčik, A., Kopečná, M., and Vávrová, K., 2020. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert opinion on drug delivery, 17 (2), 145–155. doi: 10.1080/17425247.2020.1713087.
  • Kumar, A., Pathak, K., and Bali, V., 2012. Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug discovery today, 17 (21–22), 1233–1241. doi: 10.1016/j.drudis.2012.06.013.
  • Kumar, L. and Utreja, P., 2020. Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride. Micro and nanosystems, 12 (1), 38–47. doi: 10.2174/1876402911666190603093550.
  • Kumar, N., et al., 2020. Ethosomes: a novel approach in transdermal drug delivery system. International journal of pharmacy & life sciences, 11, 6598–6608.
  • Kumar, R. and Philip, A., 2007. Modified transdermal technologies: breaking the barriers of drug permeation via the skin. Tropical journal of pharmaceutical research, 6 (1), 633–644. doi: 10.4314/tjpr.v6i1.14641.
  • Lei, M., et al., 2015. Dual drug encapsulation in a novel nano-vesicular carrier for the treatment of cutaneous melanoma: characterization and in vitro/in vivo evaluation. RSC advances, 5 (26), 20467–20478. doi: 10.1039/C4RA16306K.
  • Maghraby, G.M.E., Williams, A.C., and Barry, B.W., 1999. Skin delivery of oestradiol from deformable and traditiona liposomes: mechanistic studies. The journal of pharmacy and pharmacology, 51 (10), 1123–1134. doi: 10.1211/0022357991776813.
  • Maheshwari, R.G., et al., 2012. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi pharmaceutical journal, 20 (2), 161–170. doi: 10.1016/j.jsps.2011.10.001.
  • Manosroi, A., et al., 2009. Novel elastic nanovesicles for cosmeceutical and pharmaceutical applications. Chiang Mai journal of science, 36, 168–178.
  • Marwah, H., et al., 2016. Permeation enhancer strategies in transdermal drug delivery. Drug delivery, 23 (2), 564–578. doi: 10.3109/10717544.2014.935532.
  • Mbah, C.C., Builders, P.F., and Attama, A.A., 2014. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert opinion on drug delivery, 11 (1), 45–59. doi: 10.1517/17425247.2013.860130.
  • Michaels, A., Chandrasekaran, S., and Shaw, J., 1975a. Drug permeation through human skin: theory and in vitro experimental measurement. AIChE journal, 21 (5), 985–996. doi: 10.1002/aic.690210522.
  • Michaels, A., Chandrasekaran, S., and Shaw, J.J.A.J., 1975b. Drug permeation through human skin: theory and in vitro experimental measurement. AIChE journal, 21 (5), 985.
  • Mishra, N. and Jain, P., 2022. A comprehensive review on transdermal patch of ciprofloxacin hydrochloride. International journal of advances in pharmacy medicine and bioallied sciences, 10 (2), 82–87.
  • Mishra, V., et al., 2018. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics, 10 (4), 191. doi: 10.3390/pharmaceutics10040191.
  • Mohamed, J.M.M., et al., 2022. Polymeric ethosomal gel loaded with nimodipine: Optimisation, pharmacokinetic and histopathological analysis. Saudi pharmaceutical journal, 30 (11), 1603–1611. doi: 10.1016/j.jsps.2022.09.003.
  • Mohammed, B.S. and Al Gawhari, F.J., 2021. Transethosomes a novel transdermal drug delivery system for antifungal drugs. Journal of drug delivery science and technology, 11, 238–243.
  • Mohanty, D., et al., 2018. Ethosomes: a novel approach for transdermal drug delivery. International journal of chemtech research, 11 (8), 219–226. doi: 10.20902/IJCTR.2018.110826.
  • Moolakkadath, T., et al., 2018. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artificial cells, nanomedicine, and biotechnology, 46 (2), 755–765. doi: 10.1080/21691401.2018.1469025.
  • Moyá, M.L., et al., 2019. Preparation and characterization of new liposomes. Bactericidal activity of cefepime encapsulated into cationic liposomes. Pharmaceutics, 11 (2), 69. doi: 10.3390/pharmaceutics11020069.
  • Nandure, H.P., et al., 2013. Ethosome: a novel drug carrier. International journal of pharmaceutical research & allied sciences, 2, 18–30.
  • Nayak, D. and Tippavajhala, V.K., 2021. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iranian journal of pharmaceutical research, 20, 186.
  • Nicolini, C., 2016. Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. NanoWorld journal, 2, 41–51.
  • Nikpoor, A.R., et al., 2015. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model. International journal of pharmaceutics, 495 (1), 162–170. doi: 10.1016/j.ijpharm.2015.08.048.
  • Nimmy, J., Krishnakumar, D.B., and Nair, S., 2017. Ethosomal gel: a review. European journal of medical research, 4, 301–305.
  • Ogura, M., Paliwal, S., and Mitragotri, S., 2008. Low-frequency sonophoresis: current status and future prospects. Advanced drug delivery reviews, 60 (10), 1218–1223. doi: 10.1016/j.addr.2008.03.006.
  • Paliwal, S., et al., 2019. Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. Journal of Microbiological Methods, 161, 18–27. doi: 10.1016/j.mimet.2019.04.001.
  • Pan, X., et al., 2013. Nanostructed cubosomes as advanced drug delivery system. Current pharmaceutical design, 19 (35), 6290–6297. doi: 10.2174/1381612811319350006.
  • Pandey, N., 2011. Proniosomes and ethosomes: new prospect in transdermal and dermal drug delivery system. International journal of pharmaceutical sciences and research, 2, 1988–1996.
  • Pandey, V., Golhani, D., and Shukla, R., 2015. Ethosomes: versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug delivery, 22 (8), 988–1002. doi: 10.3109/10717544.2014.889777.
  • Patel, S., Patel, M., and Patel, N., 2010. Need, development and application of virosomal system in medicine. International journal of pharmaceutical sciences and nanotechnology, 3 (3), 1065–1074. doi: 10.37285/ijpsn.2010.3.3.4.
  • Patil, P., et al., 2012. Recent trends in challenges and opportunities of Transdermal drug delivery system. International journal of drug development and research, 4, 0–0.
  • Phatale, V., et al., 2022. Overcoming skin barriers through advanced transdermal drug delivery approaches. Journal of controlled release, 351, 361–380. doi: 10.1016/j.jconrel.2022.09.025.
  • Pilch, E. and Musiał, W., 2018. Liposomes with an ethanol fraction as an application for drug delivery. International journal of molecular sciences, 19 (12), 3806. doi: 10.3390/ijms19123806.
  • Pirvu, C.D., et al., 2010. Elastic vesicles as drugs carriers through the skin. Farmacia, 58, 128–135.
  • Potard, G., et al., 1999. Quantitative HPLC analysis of sunscreens and caffeine during in vitro percutaneous penetration studies. International journal of pharmaceutics, 189 (2), 249–260. doi: 10.1016/s0378-5173(99)00258-6.
  • Prausnitz, M.R. and Langer, R., 2008. Transdermal drug delivery. Nature biotechnology, 26 (11), 1261–1268. doi: 10.1038/nbt.1504.
  • Prausnitz, M.R., Mitragotri, S., and Langer, R., 2004. Current status and future potential of transdermal drug delivery. Nature reviews drug discovery, 3 (2), 115–124. doi: 10.1038/nrd1304.
  • Qushawy, M., et al., 2018. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics, 10 (1), 26. doi: 10.3390/pharmaceutics10010026.
  • Radomska-Soukharev, A., 2007. Stability of lipid excipients in solid lipid nanoparticles. Advanced drug delivery reviews, 59 (6), 411–418. doi: 10.1016/j.addr.2007.04.004.
  • Raj, R., Raj, P.M., and Ram, A., 2018. Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery: formulation optimization, in vitro skin permeation and in vivo bioavailability. Artificial cells, nanomedicine, and biotechnology, 46 (2), 951–963. doi: 10.1080/21691401.2018.1473414.
  • Ramadon, D., et al., 2021. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug delivery and translational research, 12, 1–34.
  • Ramadon, D., Pramesti, S.S., and Anwar, E., 2017. Formulation, stability test and in vitro penetration study of transethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract. International journal of applied pharmaceutics, 9 (5), 91–96. doi: 10.22159/ijap.2017v9i5.20073.
  • Rastogi, V. and Yadav, P., 2012. Transdermal drug delivery system: an overview. Asian journal of pharmaceutics, 6 (3), 161. doi: 10.4103/0973-8398.104828.
  • Romero, E.L. and Morilla, M.J., 2013. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. International journal of nanomedicine, 8, 3171–3186. doi: 10.2147/IJN.S33048.
  • Roy, S.D. and Flynn, G.L.J.P.R., 1990. Transdermal delivery of narcotic analgesics: pH, anatomical, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharmaceutical research, 7, 842–847.
  • Salem, H.F., et al., 2019. Progesterone-loaded nanosized transethosomes for vaginal permeation enhancement: formulation, statistical optimization, and clinical evaluation in anovulatory polycystic ovary syndrome. Journal of liposome research, 29 (2), 183–194. doi: 10.1080/08982104.2018.1524483.
  • Salem, H.F., et al., 2020. Mitigation of rheumatic arthritis in a rat model via transdermal delivery of dapoxetine HCl amalgamated as a nanoplatform: in vitro and in vivo assessment. International journal of nanomedicine, 15, 1517–1535. doi: 10.2147/IJN.S238709.
  • Samad, A., Sultana, Y., and Aqil, M., 2007. Liposomal drug delivery systems: an update review. Current drug delivery, 4 (4), 297–305. doi: 10.2174/156720107782151269.
  • Sammeta, S.M., Repka, M.A., and Narasimha Murthy, S., 2011. Magnetophoresis in combination with chemical enhancers for transdermal drug delivery. Drug development and industrial pharmacy, 37 (9), 1076–1082. doi: 10.3109/03639045.2011.559659.
  • Saraf, S., et al., 2010. Sphingosomes novel approach to vesicular drug delivery. Asian journal of scientific research, 4 (1), 1–15. doi: 10.3923/ajsr.2011.1.15.
  • Semalty, A., et al., 2009. Pharmacosomes: the lipid-based new drug delivery system. Expert opinion on drug delivery, 6 (6), 599–612. doi: 10.1517/17425240902967607.
  • Sguizzato, M., et al., 2021. Ethosomes and transethosomes for mangiferin transdermal delivery. Antioxidants, 10 (5), 768. doi: 10.3390/antiox10050768.
  • Shahidulla, S., 2021. Ethosomes as novel vesicular carrier: an overview.
  • Shaji, J. and Bajaj, R., 2017. Formulation development of 5-fluorouracil transethosomes for skin cancer therapy. International journal of pharmacy and pharmaceutical research, 11, 454–464.
  • Shaji, J. and Bajaj, R., 2018. Transethosomes: a new prospect for enhanced transdermal delivery. International journal of pharmaceutical sciences and research, 9, 2681–2685.
  • Shaji, J. and Garude, S., 2014. Transethosomes and ethosomes for enhanced transdermal delivery of ketorolac tromethamine: a comparative assessment. International journal of current pharmaceutical research, 6, 88–93.
  • Shuwaili, A.H.A., Rasool, B.K.A., and Abdulrasool, A.A., 2016. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. European journal of pharmaceutics and biopharmaceutics: official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.V, 102, 101–114. doi: 10.1016/j.ejpb.2016.02.013.
  • Simoes, S., et al., 2005. Developments in the rat adjuvant arthritis model and its use in therapeutic evaluation of novel non-invasive treatment by SOD in Transfersomes. Journal of controlled release: official journal of the controlled release society, 103 (2), 419–434. doi: 10.1016/j.jconrel.2004.12.008.
  • Singh, D., et al., 2015. Vesicular system: versatile carrier for transdermal delivery of bioactives. Artificial cells, nanomedicine, and biotechnology, 43 (4), 282–290. doi: 10.3109/21691401.2014.883401.
  • Sizochenko, N., et al., 2021. Zeta potentials (ζ) of metal oxide nanoparticles: a meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact, 22, 100317. doi: 10.1016/j.impact.2021.100317.
  • Sloan, K.B. and Wasdo, S., 2003. Designing for topical delivery: prodrugs can make the difference. Medicinal research reviews, 23 (6), 763–793. doi: 10.1002/med.10048.
  • Song, C.K., et al., 2012. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids and surfaces B biointerfaces, 92, 299–304. doi: 10.1016/j.colsurfb.2011.12.004.
  • Song, H., et al., 2019. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. International journal of nanomedicine, 14, 3177–3188. doi: 10.2147/IJN.S188842.
  • Subedi, R.K., et al., 2010. Recent advances in transdermal drug delivery. Archives of pharmacal research, 33 (3), 339–351. doi: 10.1007/s12272-010-0301-7.
  • Sudhakar, C., et al., 2012. Ethosomes as non-invasive loom for transdermal drug delivery system. Nanomedicine and drug delivery, Vol. 1. Ontario, CA: Apple Academic Press.
  • Sudhakar, K., et al., 2021. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. International journal of pharmaceutics, 610, 121226. doi: 10.1016/j.ijpharm.2021.121226.
  • Tadwee, I.K., Gore, S., and Giradkar, P., 2012. Advances in topical drug delivery system: a review. International journal of pharmaceutical sciences and research, 1, 14–23.
  • Tanwar, H. and Sachdeva, R., 2016. Transdermal drug delivery system: a review. International journal of pharmaceutical sciences and research, 7, 2274.
  • Tiwari, G., et al., 2020. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally. Nanoscience & nanotechnology-Asia, 10 (1), 12–20. doi: 10.2174/2210681208666180820145327.
  • Tojo, K., Chiang, C., and Chien, Y.J.J.O.P.S., 1987. Drug permeation across the skin: effect of penetrant hydrophilicity. Journal of pharmaceutical sciences, 76 (2), 123–126. doi: 10.1002/jps.2600760208.
  • Touitou, E., et al., 2000. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of controlled release: official journal of the controlled release society, 65 (3), 403–418. doi: 10.1016/s0168-3659(99)00222-9.
  • Touitou, E., et al., 2001. Intracellular delivery mediated by an ethosomal carrier. Biomaterials, 22 (22), 3053–3059. doi: 10.1016/s0142-9612(01)00052-7.
  • Vasil’ev, A., et al., 2001. Transdermal therapeutic systems for controlled drug release (a review). Pharmaceutical chemistry journal, 35 (11), 613–626. doi: 10.1023/A:1015149911917.
  • Verma, P. and Pathak, K., 2010. Therapeutic and cosmeceutical potential of ethosomes: an overview. Journal of advanced pharmaceutical technology & research, 1 (3), 274–282. doi: 10.4103/0110-5558.72415.
  • Verma, S. and Utreja, P., 2019. Vesicular nanocarrier based treatment of skin fungal infections: potential and emerging trends in nanoscale pharmacotherapy. Asian journal of pharmaceutical sciences, 14 (2), 117–129. doi: 10.1016/j.ajps.2018.05.007.
  • Wang, Y., et al., 2021. Novel transethosomes for the delivery of brucine and strychnine: formulation optimization, characterization and in vitro evaluation in hepatoma cells. Journal of drug delivery science and technology, 64, 102425. doi: 10.1016/j.jddst.2021.102425.
  • Whitehead, K.A., Langer, R., and Anderson, D.G.J.N.R.D.D., 2009. Knocking down barriers: advances in siRNA delivery. Nature reviews drug discovery, 8 (2), 129–138. doi: 10.1038/nrd2742.
  • Wiechers, J.W., 1989. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharmaceutisch weekblad scientific edition, 11 (6), 185–198. doi: 10.1007/BF01959410.
  • Yu, Y. Q., et al., 2021. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. J. F. I. B. & biotechnology, 9, 646554.
  • Zahid, S.R., et al., 2018. Ethosome: a novel vesicular carrier for transdermal drug delivery. Journal of drug delivery and therapeutics, 8 (6), 318–326. doi: 10.22270/jddt.v8i6.2028.
  • Zaki, R.M., et al., 2022. Wound healing efficacy of rosuvastatin transethosomal gel, I optimal optimization, histological and in vivo evaluation. Pharmaceutics, 14 (11), 2521. doi: 10.3390/pharmaceutics14112521.
  • Zhang, L., et al., 2020. Dermal targeting delivery of terbinafine hydrochloride using novel multi-ethosomes: a new approach to fungal infection treatment. Coatings, 10 (4), 304. doi: 10.3390/coatings10040304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.