340
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Unravelling the role of lipid composition on liposome-protein interactions

, , , , , & show all
Pages 88-96 | Received 04 Mar 2023, Accepted 06 Jun 2023, Published online: 20 Jun 2023

References

  • Abumanhal-Masarweh, H., et al., 2019. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. Journal of controlled release: official Journal of the Controlled Release Society, 307, 331–341. doi: 10.1016/j.jconrel.2019.06.025.
  • Aggarwal, P., et al., 2009. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced drug delivery reviews, 61 (6), 428–437. doi: 10.1016/j.addr.2009.03.009.
  • Akinc, A., et al., 2019. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature nanotechnology, 14 (12), 1084–1087. doi: 10.1038/s41565-019-0591-y.
  • Akinc, A., et al., 2010. Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms. Molecular therapy: the journal of the american society of gene therapy, 18 (7), 1357–1364. doi: 10.1038/mt.2010.85.
  • Allec, N., et al., 2015. Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept. Scientific reports, 5 (1), 12085. doi: 10.1038/srep12085.
  • Bai, Z., et al., 2019. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. Journal of materials chemistry. B, 7 (8), 1209–1225. doi: 10.1039/c8tb02946f.
  • Blanco, E., Shen, H., and Ferrari, M., 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology, 33 (9), 941–951. doi: 10.1038/nbt.3330.
  • Campani, V., et al., 2020a. Skin permeation and thermodynamic features of curcumin-loaded liposomes. Journal of materials science. materials in medicine, 31 (2), 18. doi: 10.1007/s10856-019-6351-6.
  • Campani, V., et al., 2020b. Hybrid lipid self-assembling nanoparticles for brain delivery of microRNA. International journal of pharmaceutics, 588, 119693. doi: 10.1016/j.ijpharm.2020.119693.
  • Chakraborti, S., et al., 2012. Interaction of Polyethyleneimine-Functionalized ZnO Nanoparticles with Bovine Serum Albumin. Langmuir: The ACS journal of surfaces and colloids, 28 (30), 11142–11152. doi: 10.1021/la3007603.
  • Chen, D., et al., 2017. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 12 (17), 2113–2135. doi: 10.2217/nnm-2017-0178.
  • Chen, D., et al., 2019. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale, 11 (40), 18806–18824. doi: 10.1039/c9nr05788a.
  • Clemente, I., et al., 2022. Structuring and de-structuring of nanovectors from algal lipids. Part 1: physico-chemical characterization. Colloids and surfaces. B, Biointerfaces, 220, 112939. doi: 10.1016/j.colsurfb.2022.112939.
  • Corbo, C., et al., 2017. Unveiling the in Vivo protein corona of circulating leukocyte-like carriers. ACS Nano, 11 (3), 3262–3273. doi: 10.1021/acsnano.7b00376.
  • Cullis, P. R., and Hope, M. J., 1991. Chapter 1 Physical properties and functional roles of lipids in membranes. New Comprehensive Biochemistry, 20, 1–41. doi: 10.1016/S0167-7306(08)60329-4
  • Demetzos, C., 2008. Differential Scanning Calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal stability. Journal of liposome research, 18 (3), 159–173. doi: 10.1080/08982100802310261.
  • Dilliard, S.A., Cheng, Q., and Siegwart, D.J., 2021. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proceedings of the national academy of sciences, 118 (52), e2109256118. doi: 10.1073/pnas.2109256118.
  • Dimitrova, M.N., et al., 2000. Interaction of albumins from different species with phospholipid liposomes. Multiple binding sites system. International journal of biological macromolecules, 27 (3), 187–194. doi: 10.1016/s0141-8130(00)00123-9.
  • Dimitrova, M.N., et al., 2002. Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloids and surfaces B: biointerfaces, 24 (1), 53–61. doi: 10.1016/S0927-7765(01)00248-X.
  • Ferrel, C., et al., 2021. Re-engineering a Liposome with Membranes of Red Blood Cells for Drug Delivery and Diagnostic Applications. ACS applied bio materials, 4 (9), 6974–6981. doi: 10.1021/acsabm.1c00643.
  • Fotticchia, I., et al., 2014. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry. Langmuir: The ACS journal of surfaces and colloids, 30 (48), 14427–14433. doi: 10.1021/la503558w.
  • Friedl, J.D., et al., 2021. Bioinert, stealth or interactive: how surface chemistry of nanocarriers determines their fate in vivo. Advanced functional materials, 31 (34), 2103347. n/a (n/a), doi: 10.1002/adfm.202103347.
  • Fusco, G., et al., 2014. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nature communications, 5 (1), 3827. doi: 10.1038/ncomms4827.
  • Giulimondi, F., et al., 2019. Interplay of protein corona and immune cells controls blood residency of liposomes. Nature communications, 10 (1), 3686. doi: 10.1038/s41467-019-11642-7.
  • Gunawan, C., et al., 2014. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. Journal of materials chemistry. B, 2 (15), 2060–2083. doi: 10.1039/c3tb21526a.
  • Heimburg, T., 2000. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophysical Journal, 78 (3), 1154–1165. doi: 10.1016/S0006-3495(00)76673-2.
  • Hirsch-Lerner, D., and Barenholz, Y., 1999. Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochimica et biophysica acta, 1461 (1), 47–57. doi: 10.1016/s0005-2736(99)00145-5.
  • Huang, R., and Lau, B.L.T., 2016. Biomolecule–nanoparticle interactions: elucidation of the thermodynamics by isothermal titration calorimetry. Biochimica et biophysica acta, 1860 (5), 945–956. doi: 10.1016/j.bbagen.2016.01.027.
  • Lindman, S., et al., 2007. Systematic investigation of the thermodynamics of HSA adsorption to n-iso-propylacrylamide/n-tert-butylacrylamide copolymer nanoparticles. effects of particle size and hydrophobicity. Nano letters, 7 (4), 914–920. doi: 10.1021/nl062743+.
  • Manca, M.L., et al., 2013. Glycerosomes: a new tool for effective dermal and transdermal drug delivery. International Journal of Pharmaceutics, 455 (1-2), 66–74. doi: 10.1016/j.ijpharm.2013.07.060.
  • Mehan, S., et al., 2013. Small-angle neutron scattering study of structure and interaction of nanoparticle, protein, and surfactant complexes. Langmuir: the ACS journal of surfaces and colloids, 29 (36), 11290–11299. doi: 10.1021/la402977b.
  • Mills, J.A., et al., 2022. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials science, 10 (12), 3029–3053. doi: 10.1039/d2bm00181k.
  • Mitchell, M.J., et al., 2021. Engineering precision nanoparticles for drug delivery. Nature reviews drug discovery, 20 (2), 101–124. doi: 10.1038/s41573-020-0090-8.
  • Monopoli, M.P., et al., 2012. Biomolecular coronas provide the biological identity of nanosized materials. Nature nanotechnology, 7 (12), 779–786. doi: 10.1038/nnano.2012.207.
  • Mura, S., et al., 2009. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. International journal of pharmaceutics, 380 (1-2), 72–79. doi: 10.1016/j.ijpharm.2009.06.040.
  • Nakhaei, P., et al., 2021. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in bioengineering and biotechnology, 9, 705886. doi: 10.3389/fbioe.2021.705886.
  • Porru, M., et al., 2014. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid. Oncotarget, 5 (21), 10446–10459. doi: 10.18632/oncotarget.2182.
  • Prozeller, D., Morsbach, S., and Landfester, K., 2019. Isothermal titration calorimetry as a complementary method for investigating nanoparticle–protein interactions. Nanoscale, 11 (41), 19265–19273. doi: 10.1039/c9nr05790k.
  • Qi, X.-R., and Zhao, Z, 2011. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. International journal of nanomedicine, 6, 3087–3098. doi: 10.2147/IJN.S25399.
  • Rampado, R., et al., 2020. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “Stealthy” nanomaterials. Frontiers in bioengineering and biotechnology, 8, 166. doi: 10.3389/fbioe.2020.00166.
  • Regelin, A.E., et al., 2000. Biophysical and lipofection studies of DOTAP analogs. Biochimica et biophysica acta, 1464 (1), 151–164. doi: 10.1016/s0005-2736(00)00126-7.
  • Reymond-Laruinaz, S., et al., 2016. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study. Applied surface science, 389, 17–24. doi: 10.1016/j.apsusc.2016.07.082.
  • Reynolds, M., et al., 2012. Multivalent gold glycoclusters: high affinity molecular recognition by bacterial lectin PA-IL. Chemistry, 18 (14), 4264–4273. doi: 10.1002/chem.201102034.
  • Ristori, S., et al., 2018. Structural characterization of self-assembling hybrid nanoparticles for bisphosphonate delivery in tumors. Molecular pharmaceutics, 15 (3), 1258–1265. doi: 10.1021/acs.molpharmaceut.7b01085.
  • Salzano, G., et al., 2011. Self-assembly nanoparticles for the delivery of bisphosphonates into tumors. International journal of pharmaceutics, 403 (1-2), 292–297. doi: 10.1016/j.ijpharm.2010.10.046.
  • Shi, F., et al., 2002. Interference of poly(ethylene glycol)–lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. The biochemical journal, 366 (Pt 1), 333–341. doi: 10.1042/BJ20020590.
  • Suk, J.S., et al., 2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99 (Pt A), 28–51. doi: 10.1016/j.addr.2015.09.012.
  • Takechi-Haraya, Y., et al., 2016. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir: the ACS journal of surfaces and colloids, 32 (24), 6074–6082. doi: 10.1021/acs.langmuir.6b00741.
  • Thakur, R., Das, A., and Chakraborty, A., 2014. Interaction of human serum albumin with liposomes of saturated and unsaturated lipids with different phase transition temperatures: a spectroscopic investigation by membrane probe PRODAN. RSC advances, 4 (28), 14335–14347. doi: 10.1039/C4RA01214C.
  • Wang, M., et al., 2015. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy. Nanoscale, 7 (37), 15191–15196. doi: 10.1039/c5nr04498g.
  • Zhang, Z., et al., 2019. Brain-targeted drug delivery by manipulating protein corona functions. Nature communications, 10 (1), 3561. doi: 10.1038/s41467-019-11593-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.