436
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Liposome bilayer stability: emphasis on cholesterol and its alternatives

, , , , , , , , & show all
Pages 178-202 | Received 15 Feb 2023, Accepted 12 Jun 2023, Published online: 28 Jun 2023

References

  • Adler-Moore, J.P., and Proffitt, R.T., 1993. Development, characterization, efficacy and mode of action of ambisome, a unilamellar liposomal formulation of amphotericin B. Journal of liposome research, 3 (3), 429–450. doi: 10.3109/08982109309150729.
  • Adrar, N., et al., 2021. Stability evaluation of interdigitated liposomes prepared with a combination of 1, 2‐d istearoyl‐sn‐glycero‐3‐phosphocholine and 1, 2‐dilauroyl‐sn‐glycero‐3‐phosphocholine. Journal of chemical technology & biotechnology, 96 (9), 2537–2546. doi: 10.1002/jctb.6793.
  • Ahmed, K.S., et al., 2019. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. Journal of drug targeting, 27 (7), 742–761. doi: 10.1080/1061186X.2018.1527337.
  • Akbarzadeh, A., et al., 2013. Liposome: classification, preparation, and applications. nanoscale research letters, 8 (1), 9. doi: 10.1186/1556-276X-8-102.
  • Akpinar, B., et al., 2016. Determining the effective density and stabilizer layer thickness of sterically stabilized nanoparticles. Macromolecules, 49 (14), 5160–5171. doi: 10.1021/acs.macromol.6b00987.
  • Ali, M.H., et al., 2010. Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent. The journal of pharmacy and pharmacology, 62 (11), 1646–1655. doi: 10.1111/j.2042-7158.2010.01090.x.
  • Allen, T.M., and Cullis, P.R., 2013. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65 (1), 36–48. doi: 10.1016/j.addr.2012.09.037.
  • Alshaer, W., et al., 2019. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC advances, 9 (53), 30976–30988. doi: 10.1039/c9ra05636j.
  • An, H., et al., 2010. Material properties of lipid microdomains: force-volume imaging study of the effect of cholesterol on lipid microdomain rigidity. Biophysical journal, 99 (3), 834–844. doi: 10.1016/j.bpj.2010.04.072.
  • Anderson, M., and Omri, A., 2004. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug delivery, 11 (1), 33–39. doi: 10.1080/10717540490265243.
  • Aramaki, Y., et al., 1993. Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharmaceutical research, 10 (8), 1228–1231. doi: 10.1023/a:1018936806278.
  • Aranda, E., et al., 2022. Interaction of docetaxel with phosphatidylcholine membranes: a combined experimental and computational study. The journal of membrane biology, 255 (2-3), 277–291. doi: 10.1007/s00232-022-00219-z.
  • Asad, M., et al., 2015. Therapeutic and immunomodulatory activities of short-course treatment of murine visceral leishmaniasis with KALSOME™10, a new liposomal amphotericin B. BMC infectious diseases, 15, 188. doi: 10.1186/s12879-015-0928-6.
  • Asai, N., et al., 2021. Detailed analysis of liposome adsorption and its rupture on the liquid-solid interface monitored by LSPR and QCM-D integrated sensor. Sensing and bio-sensing research, 32, 100415. doi: 10.1016/j.sbsr.2021.100415.
  • Ashwini, M., 2022. Design and evaluation of Nano-Lipid Carrier (NLC) loaded transdermal patches of selected oral antidiabetic drug for the treatment of gestational diabetes. Banglore, India: Rajiv Gandhi University of Health Sciences (India).
  • Aveyard, B., 2019. 269Surface forces and colloidal behaviour. In: B. Aveyard, ed. Surfactants: in solution, at interfaces and in colloidal dispersions. Oxford: Oxford University Press.
  • Ayala, V., et al., 2013. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 15 (8), 1874. doi: 10.1007/s11051-013-1874-0.
  • Barry, J., et al., 2009. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. Journal of the american chemical society, 131 (12), 4490–4498. doi: 10.1021/ja809217u.
  • Battaglia, L., and Ugazio, E., 2019. Lipid nano-and microparticles: an overview of patent-related research. Journal of nanomaterials, 2019, 1–22. doi: 10.1155/2019/2834941.
  • Belkilani, M., et al., 2021. Surface plasmon resonance monitoring of mono-rhamnolipid interaction with phospholipid-based liposomes. Langmuir : the ACS journal of surfaces and colloids, 37 (26), 7975–7985. doi: 10.1021/acs.langmuir.1c00846.
  • Bernsdorff, C., Reszka, R., and Winter, R., 1999. Interaction of the anticancer agent Taxol (paclitaxel) with phospholipid bilayers. Journal of biomedical materials research, 46 (2), 141–149. doi: 10.1002/(SICI)1097-4636(199908)46:2<141::AID-JBM2>3.0.CO;2-U.
  • Bhardwaj, U., and Burgess, D., 2010. Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. International journal of pharmaceutics, 388 (1–2), 181–189. doi: 10.1016/j.ijpharm.2010.01.003.
  • Bobo, D., et al., 2016. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research, 33 (10), 2373–2387. doi: 10.1007/s11095-016-1958-5.
  • Bourgaux, C., and Couvreur, P., 2014. Interactions of anticancer drugs with biomembranes: what can we learn from model membranes? Journal of controlled release : official journal of the controlled release society, 190, 127–138. doi: 10.1016/j.jconrel.2014.05.012.
  • Bozzuto, G., and Molinari, A., 2015. Liposomes as nanomedical devices. International journal of nanomedicine, 10, 975–999. doi: 10.2147/IJN.S68861.
  • Briuglia, M.L., et al., 2015. Influence of cholesterol on liposome stability and on in vitro drug release. Drug delivery and translational research, 5 (3), 231–242. doi: 10.1007/s13346-015-0220-8.
  • Bulbake, U., et al., 2017. Liposomal formulations in clinical use: an updated review. pharmaceutics, 9 (4), 12. [Online], doi: 10.3390/pharmaceutics9020012.
  • Buonocore, C., et al., 2020. Characterization of a new mixture of mono-rhamnolipids produced by Pseudomonas gessardii Isolated from Edmonson Point (Antarctica). Marine drugs, 18, 269–286.
  • Campbell, R.B., Balasubramanian, S.V., and Straubinger, R.M., 2001. Influence of cationic lipids on the stability and membrane properties of paclitaxel‐containing liposomes. Journal of pharmaceutical sciences, 90 (8), 1091–1105. doi: 10.1002/jps.1063.
  • Cauzzo, J., et al., 2020. Following the fate of dye-containing liposomes in vitro. International journal of molecular sciences, 21, 4847.
  • Cevc, G., 1993. Electrostatic characterization of liposomes. Chemistry and physics of lipids, 64 (1–3), 163–186. doi: 10.1016/0009-3084(93)90064-A.
  • Chain, C.Y., et al., 2020. Surface plasmon resonance as a characterization tool for lipid nanoparticles used in drug delivery. Frontiers in chemistry, 8, 605307. doi: 10.3389/fchem.2020.605307.
  • Chatterjee, S., and Banerjee, D.K., 2002. Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. Methods in molecular biology (Clifton, N.J.), 199, 3–16.
  • Chen, R.F., and Knutson, J.R., 1988. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Analytical biochemistry, 172 (1), 61–77. doi: 10.1016/0003-2697(88)90412-5.
  • Chetanachan, P., et al., 2008. Ultrastructural characterization of liposomes using transmission electron microscope. Advanced materials research, 55-57, 709–711. doi: 10.4028/www.scientific.net/AMR.55-57.709.
  • Cipolla, D., et al., 2014. Modifying the release properties of liposomes toward personalized medicine. Journal of pharmaceutical sciences, 103 (6), 1851–1862. doi: 10.1002/jps.23969.
  • Clarke, S., 1981. The hydrophobic effect: formation of micelles and biological membranes, 2nd edition (Tanford, Charles). Journal of chemical education, 58 (8), A246. doi: 10.1021/ed058pA246.1.
  • Cruje, C., and Chithrani, D., 2014. Polyethylene glycol functionalized nanoparticles for improved cancer treatment. Reviews in nanoscience and nanotechnology, 3 (1), 20–30. doi: 10.1166/rnn.2014.1042.
  • Cui, L., et al., 2014. Impact of phosphoethanolamine reverse micelles on lipid oxidation in bulk oils. Journal of oil & fat industries, 91, 1931–1937.
  • Dadwal, A., Baldi, A., and Kumar Narang, R., 2018. Nanoparticles as carriers for drug delivery in cancer. Artificial cells, nanomedicine, and biotechnology, 46 (sup2), 295–305. doi: 10.1080/21691401.2018.1457039.
  • Dan, N., 2014. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials. Langmuir : the ACS journal of surfaces and colloids, 30 (46), 13809–13814. doi: 10.1021/la5030197.
  • De Gennes, P.G., 1987. Polymers at an interface; a simplified view. Advances in colloid and interface science, 27 (3–4), 189–209. doi: 10.1016/0001-8686(87)85003-0.
  • Demetzos, C., 2016. Application of nanotechnology in drug delivery and targeting. In: C. Demetzos, ed. Pharmaceutical nanotechnology: fundamentals and practical applications. Singapore: Springer Singapore.
  • Deng, H., et al., 2018a. Modulating the rigidity of nanoparticles for tumor penetration. Chemical communications (cambridge, england), 54 (24), 3014–3017. doi: 10.1039/c8cc00398j.
  • Deng, W., et al., 2018b. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nature communications, 9 (1), 2713. doi: 10.1038/s41467-018-05118-3.
  • Devaraj, G.N., et al., 2002. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. Journal of colloid and interface science, 251 (2), 360–365. doi: 10.1006/jcis.2002.8399.
  • Domenico, L., et al., 2019. Colloidal stability of liposomes. AIMS Materials Science, 6 (2), 200–213. doi: 10.3934/matersci.2019.2.200.
  • Duda, M., Cygan, K., and Wisniewska-Becker, A., 2020. Effects of curcumin on lipid membranes: an EPR spin-label study. Cell biochemistry and biophysics, 78 (2), 139–147. doi: 10.1007/s12013-020-00906-5.
  • Dutta, S., et al., 2020. Calcein release assay to measure membrane permeabilization by recombinant alpha-synuclein. Bio protocol, 10, e3690.
  • Elizondo, E., et al., 2011. Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine. Progress in molecular biology and translational science, 104, 1–52. doi: 10.1016/B978-0-12-416020-0.00001-2.
  • Ellis, D., 2002. Amphotericin B: spectrum and resistance. The journal of antimicrobial chemotherapy, 49 Suppl 1, 7–10. doi: 10.1093/jac/49.suppl_1.7.
  • Emami, S., et al., 2016. Liposomes as carrier vehicles for functional compounds in food sector. Journal of experimental nanoscience, 11 (9), 737–759. doi: 10.1080/17458080.2016.1148273.
  • Eskandari, V., Sadeghi, M., and Hadi, A., 2021. Physical and chemical properties of nano-liposome, application in nano medicine. Journal of computational applied mechanics, 52, 751–767.
  • Farooque, F., Wasi, M., and Mughees, M.M., 2021. Liposomes as drug delivery system: an updated review. Journal of drug delivery and therapeutics, 11 (5-S), 149–158. doi: 10.22270/jddt.v11i5-S.5063.
  • Feng, S.-S., Gong, K., and Chew, J., 2002. Molecular interactions between a lipid and an antineoplastic drug paclitaxel (taxol) within the lipid monolayer at the air/water interface. Langmuir, 18 (10), 4061–4070. doi: 10.1021/la011545p.
  • Ferreira, M., et al., 2021. Liposomes as antibiotic delivery systems: a promising nanotechnological strategy against antimicrobial resistance. Molecules, 26 (7), 2047. doi: 10.3390/molecules26072047.
  • Franco-Gonzalez, J.F., et al., 2022. Lipid-A-dependent and cholesterol-dependent dynamics properties of liposomes from gram-negative bacteria in ESKAPE. Scientific reports, 12 (1), 19474. doi: 10.1038/s41598-022-22886-7.
  • Fujii, G., et al., 1997. The formation of amphotericin B ion channels in lipid bilayers. Biochemistry, 36 (16), 4959–4968. doi: 10.1021/bi962894z.
  • Gallová, J., et al., 2011. The effects of cholesterol and β-sitosterol on the structure of saturated diacylphosphatidylcholine bilayers. European biophysics journal : EBJ, 40 (2), 153–163. doi: 10.1007/s00249-010-0635-6.
  • Garbuzenko, O., Barenholz, Y., and Priev, A., 2005. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chemistry and physics of lipids, 135 (2), 117–129. doi: 10.1016/j.chemphyslip.2005.02.003.
  • Ghosh, J., et al., 2014. Liposomal cholesterol delivery activates the macrophage innate immune arm to facilitate intracellular Leishmania donovani killing. Infection and immunity, 82 (2), 607–617. doi: 10.1128/IAI.00583-13.
  • Gironi, B., et al., 2019. Free volume and dynamics in a lipid bilayer. Physical chemistry chemical physics : PCCP, 21 (41), 23169–23178. doi: 10.1039/c9cp03451j.
  • Godbey, W.T., 2022. Chapter 12 - gene delivery. In: W.T. Godbey, ed. Biotechnology and its applications. 2nd ed. Cambridge, USA: Academic Press.
  • Gonzalez Gomez, A., et al., 2019. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS omega, 4 (6), 10866–10876. doi: 10.1021/acsomega.9b00825.
  • Gopinath, D., et al., 2004. Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. International journal of pharmaceutics, 271 (1–2), 95–113. doi: 10.1016/j.ijpharm.2003.10.032.
  • Goulian, M., Bruinsma, R., and Pincus, P., 1993. Long-range forces in heterogeneous fluid membranes. Europhysics letters (EPL), 22 (2), 145–150. doi: 10.1209/0295-5075/22/2/012.
  • Gracià, R.S., et al., 2010. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft matter, 6 (7), 1472–1482. doi: 10.1039/b920629a.
  • Gregoriadis, G., and Davis, C., 1979. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochemical and biophysical research communications, 89 (4), 1287–1293. doi: 10.1016/0006-291x(79)92148-x.
  • Guimarães, D., Cavaco-Paulo, A., and Nogueira, E., 2021. Design of liposomes as drug delivery system for therapeutic applications. International journal of pharmaceutics, 601, 120571. doi: 10.1016/j.ijpharm.2021.120571.
  • Guo, L.S.S., et al., 1991. Novel antifungal drug delivery: stable amphotericin B-cholesteryl sulfate discs. International Journal of pharmaceutics, 75 (1), 45–54. doi: 10.1016/0378-5173(91)90249-N.
  • Guo, P., et al., 2018. Nanoparticle elasticity directs tumor uptake. Nature communications, 9 (1), 130. doi: 10.1038/s41467-017-02588-9.
  • Ha, Y., et al., 2021. Liposome leakage and increased cellular permeability induced by guanidine-based oligomers: effects of liposome composition on liposome leakage and human lung epithelial barrier permeability. RSC advances, 11 (51), 32000–32011. doi: 10.1039/d1ra05478c.
  • Han, M., et al., 1997. Application of liposomes for development of oral vaccines: study of in vitro stability of liposomes and antibody response to antigen associated with liposomes after oral immunization. The Journal of veterinary medical science, 59 (12), 1109–1114. doi: 10.1292/jvms.59.1109.
  • Harris, J.S., et al., 1995. Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. biochemistry, 34 (11), 3851–3857. doi: 10.1021/bi00011a043.
  • He, Y., et al., 2019. Influence of probe-sonication process on drug entrapment efficiency of liposomes loaded with a hydrophobic drug. International Journal of polymeric materials and polymeric biomaterials, 68 (4), 193–197. doi: 10.1080/00914037.2018.1434651.
  • Helmerhorst, E., et al., 2012. Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective. The clinical biochemist. Reviews, 33 (4), 161–173.
  • Hernández-Caselles, T., Villalaín, J., and Gómez-Fernández, J.C., 1993. Influence of liposome charge and composition on their interaction with human blood serum proteins. Molecular and cellular biochemistry, 120 (2), 119–126. doi: 10.1007/BF00926084.
  • Hong, S.S., et al., 2016. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. International journal of nanomedicine, 11, 4465–4477. doi: 10.2147/IJN.S113723.
  • Hou, L., et al., 2021. Studies on phytosterol acetate esters and phytosterols liposomes. Food science and technology, 41 (4), 1062–1068. doi: 10.1590/fst.19221.
  • Hussain, A., et al., 2017. Elastic liposomes as novel carriers: recent advances in drug delivery. International journal of nanomedicine, 12, 5087–5108. doi: 10.2147/IJN.S138267.
  • Immordino, M.L., Dosio, F., and Cattel, L., 2006. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International journal of nanomedicine, 1 (3), 297–315.
  • Ishii, F., and Nii, T., 2005. Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparations. Colloids and surfaces. B, biointerfaces, 41 (4), 257–262. doi: 10.1016/j.colsurfb.2004.12.018.
  • Israelachvili, J., and Wennerström, H., 1996. Role of hydration and water structure in biological and colloidal interactions. Nature, 379 (6562), 219–225. doi: 10.1038/379219a0.
  • Jackman, J.A., and Cho, N.-J., 2020. Supported lipid bilayer formation: beyond vesicle fusion. Langmuir : the ACS journal of surfaces and colloids, 36 (6), 1387–1400. doi: 10.1021/acs.langmuir.9b03706.
  • Janoff, A.S., et al., 1988. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proceedings of the national academy of sciences of the United States of America, 85 (16), 6122–6126. &. doi: 10.1073/pnas.85.16.6122.
  • Jeong, J.Y., et al., 2013. Targeted inhibition of phosphatidyl inositol-3-kinase p110β, but not p110α, enhances apoptosis and sensitivity to paclitaxel in chemoresistant ovarian cancers. Apoptosis : an international journal on programmed cell death, 18 (4), 509–520. doi: 10.1007/s10495-013-0807-9.
  • Jimah, J.R., Schlesinger, P.H., and Tolia, N.H., 2017. Liposome disruption assay to examine lytic properties of biomolecules. Bio protocol, 7, e2433.
  • Jiménez-Escrig, A., and Sánchez-Muniz, F.J., 2000. Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition research, 20 (4), 585–598. doi: 10.1016/S0271-5317(00)00149-4.
  • Jin, M., et al., 2018. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. International journal of nanomedicine, 13, 2405–2426. doi: 10.2147/IJN.S161426.
  • Jovanović, A.A., et al., 2018. Comparative effects of cholesterol and β‐sitosterol on the liposome membrane characteristics. European Journal of lipid science and technology, 120 (9), 1800039. doi: 10.1002/ejlt.201800039.
  • Kaddah, S., et al., 2018. Corticoids modulate liposome membrane fluidity and permeability depending on membrane composition and experimental protocol design. Biochimie, 153, 33–45. doi: 10.1016/j.biochi.2018.06.011.
  • Kampan, N.C., et al., 2015. Paclitaxel and its evolving role in the management of ovarian cancer. Biomed research international, 2015, 413076. doi: 10.1155/2015/413076.
  • Kanásová, M., and Nesměrák, K., 2017. Systematic review of liposomes’ characterization methods. Monatshefte für chemie - chemical monthly, 148 (9), 1581–1593. doi: 10.1007/s00706-017-1994-9.
  • Kapoor, Y., Howell, B.A., and Chauhan, A., 2009. Liposome assay for evaluating ocular toxicity of surfactants. Investigative ophthalmology & visual science, 50 (6), 2727–2735. doi: 10.1167/iovs.08-2980.
  • Karal, M.A.S., et al., 2022. Effects of cholesterol on the size distribution and bending modulus of lipid vesicles. Plos one, 17 (1), e0263119. doi: 10.1371/journal.pone.0263119.
  • Khan, A., et al., 2022. Safety, stability, and therapeutic efficacy of long-circulating TQ-incorporated liposomes: implication in the treatment of lung cancer. Pharmaceutics, 14 (1), 153. doi: 10.3390/pharmaceutics14010153.
  • Khan, D.R., et al., 2008. Effects of drug hydrophobicity on liposomal stability. Chemical biology & drug design, 71 (1), 3–7. doi: 10.1111/j.1747-0285.2007.00610.x.
  • Khater, D., et al., 2021. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: a review. cosmetics, 8 (2), 39. doi: 10.3390/cosmetics8020039.
  • Khelashvili, G., et al., 2014. Molecular origins of bending rigidity in lipids with isolated and conjugated double bonds: the effect of cholesterol. Chemistry and physics of lipids, 178, 18–26. doi: 10.1016/j.chemphyslip.2013.12.012.
  • Kirby, C., Clarke, J., and Gregoriadis, G., 1980. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. The biochemical journal, 186 (2), 591–598. doi: 10.1042/bj1860591.
  • Kotenkov, S., et al., 2019. Effect of cholesterol and curcumin on ordering of DMPC bilayers. Applied magnetic resonance, 50 (1–3), 511–520. doi: 10.1007/s00723-018-1102-2.
  • Koudelka, S., and Turánek, J., 2012. Liposomal paclitaxel formulations. Journal of controlled release : official journal of the controlled release society, 163 (3), 322–334. doi: 10.1016/j.jconrel.2012.09.006.
  • Krasnici, S., et al., 2003. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. International journal of cancer, 105 (4), 561–567. doi: 10.1002/ijc.11108.
  • Kuhl, T.L., et al., 1994. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. biophysical journal, 66 (5), 1479–1488. doi: 10.1016/S0006-3495(94)80938-5.
  • Kyrikou, I., et al., 2005. A comparative study of the effects of cholesterol and sclareol, a bioactive labdane type diterpene, on phospholipid bilayers. Chemistry and physics of lipids, 133 (2), 125–134. doi: 10.1016/j.chemphyslip.2004.09.021.
  • Lafi, Z., et al., 2021. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC advances, 11 (47), 29164–29177. doi: 10.1039/d1ra05138e.
  • Langevin, D., 1992. Micelles and microemulsions. Annual review of physical chemistry, 43 (1), 341–369. doi: 10.1146/annurev.pc.43.100192.002013.
  • Laouini, A., et al., 2012. Preparation, characterization and applications of liposomes: state of the art. Journal of colloid science and biotechnology, 1 (2), 147–168. doi: 10.1166/jcsb.2012.1020.
  • Large, D.E., et al., 2021. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced drug delivery reviews, 176, 113851. doi: 10.1016/j.addr.2021.113851.
  • Lasic, D.D., 1994. Sterically stabilized vesicles. Angewandte chemie international edition in english, 33 (17), 1685–1698. doi: 10.1002/anie.199416851.
  • Lasic, D.D., 1998. Novel applications of liposomes. Trends in biotechnology, 16 (7), 307–321. doi: 10.1016/s0167-7799(98)01220-7.
  • Lee, E.H., et al., 2005a. Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes. Biomaterials, 26 (2), 205–210. doi: 10.1016/j.biomaterials.2004.02.020.
  • Lee, S.-C., et al., 2005b. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol. Journal of liposome research, 15 (3–4), 157–166. doi: 10.1080/08982100500364131.
  • Leite, N.B., et al., 2022. Quercetin induces lipid domain-dependent permeability. Chemistry and physics of lipids, 242, 105160. doi: 10.1016/j.chemphyslip.2021.105160.
  • Li, C., et al., 2021. STING-activating drug delivery systems: design strategies and biomedical applications. chinese chemical letters, 32 (5), 1615–1625. doi: 10.1016/j.cclet.2021.01.001.
  • Li, J., et al., 2015. A review on phospholipids and their main applications in drug delivery systems. Asian Journal of pharmaceutical sciences, 10 (2), 81–98. doi: 10.1016/j.ajps.2014.09.004.
  • Li, Q., Li, X., and Zhao, C., 2020. Strategies to obtain encapsulation and controlled release of small hydrophilic molecules. Frontiers in bioengineering and biotechnology, 8, 437. doi: 10.3389/fbioe.2020.00437.
  • Liu, G., et al., 2022a. Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Critical reviews in analytical chemistry, 52 (2), 392–412. doi: 10.1080/10408347.2020.1805293.
  • Liu, P., Chen, G., and Zhang, J., 2022b. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 27 (4), 1372. doi: 10.3390/molecules27041372.
  • Lombardo, D., and Kiselev, M.A., 2022. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics, 14 (3), 543. [Online]doi: 10.3390/pharmaceutics14030543.
  • Lombardo, D., et al., 2016. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials, 6 (7), 125. doi: 10.3390/nano6070125.
  • Lombardo, D., et al., 2016a. Soft Interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials (basel), 6 (7), 125. doi: 10.3390/nano6070125.
  • Lombardo, D., et al., 2016b. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochimica et biophysica acta, 1858 (11), 2769–2777. doi: 10.1016/j.bbamem.2016.08.001.
  • Lombardo, D., et al., 2019a. Colloidal stability of liposomes. AIMS materials science, 6 (2), 200–213. doi: 10.3934/matersci.2019.2.200.
  • Lombardo, D., et al., 2018. Soft nanoparticles charge expression within lipid membranes: the case of amino terminated dendrimers in bilayers vesicles. Colloids and surfaces. B, biointerfaces, 170, 609–616. doi: 10.1016/j.colsurfb.2018.06.031.
  • Lombardo, D., Kiselev, M.A., and Caccamo, M.T., 2019b. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of nanomaterials, 2019, 1–26. 2019. doi: 10.1155/2019/3702518.
  • Lou, J., and Best, M.D., 2020. A general approach to enzyme-responsive liposomes. Chemistry (weinheim an der bergstrasse, germany), 26 (39), 8597–8607. doi: 10.1002/chem.202000529.
  • Luwi, N.E.M., et al., 2022. Liposomes as immunological adjuvants and delivery systems in the development of tuberculosis vaccine: a review. Asian pacific Journal of tropical medicine, 15 (1), 7–16. doi: 10.4103/1995-7645.332806.
  • Maček Lebar, A., et al., 2021. Water pores in planar lipid bilayers at fast and slow rise of transmembrane voltage. Membranes, 11 (4), 263. doi: 10.3390/membranes11040263.
  • Magazù, S., Migliardo, F., and Telling, M.T.F., 2007. Study of the dynamical properties of water in disaccharide solutions. European biophysics journal : EBJ, 36 (2), 163–171. doi: 10.1007/s00249-006-0108-0.
  • Mahler, F., et al., 2021. Self-assembly of protein-containing lipid-bilayer nanodiscs from small-molecule amphiphiles. Small, 17 (49), 2103603. doi: 10.1002/smll.202103603.
  • Moghimi, S.M., et al., 1994. Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes. FEBS letters, 344 (1), 25–30. doi: 10.1016/0014-5793(94)00351-3.
  • Monteiro, N., et al., 2014. Liposomes in tissue engineering and regenerative medicine. Journal of the royal society, interface, 11 (101), 20140459. doi: 10.1098/rsif.2014.0459.
  • Muthukrishnan, L.J.F., and Technology, B., 2022. Nanonutraceuticals—challenges and novel nano-based carriers for effective delivery and enhanced bioavailability. Food and bioprocess technology, 15 (10), 2155–2184. doi: 10.1007/s11947-022-02807-2.
  • Nakano, K., et al., 2008. A novel method for measuring rigidity of submicron-size liposomes with atomic force microscopy. International journal of pharmaceutics, 355 (1–2), 203–209. doi: 10.1016/j.ijpharm.2007.12.018.
  • Nakhaei, P., et al., 2021. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in bioengineering and biotechnology, 9, 705886. doi: 10.3389/fbioe.2021.705886.
  • Narenji, M., Talaee, M.R., and Moghimi, H.R., 2017. Effect of charge on separation of liposomes upon stagnation. Iranian journal of pharmaceutical research : IJPR, 16 (2), 423–431.
  • Needham, D., Mcintosh, T.J., and Lasic, D.D., 1992. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et biophysica acta, 1108 (1), 40–48. doi: 10.1016/0005-2736(92)90112-y.
  • Niu, M., et al., 2012. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. European journal of pharmaceutics and biopharmaceutics : official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.v, 81 (2), 265–272. doi: 10.1016/j.ejpb.2012.02.009.
  • Nordström, R., et al., 2021. Quantitative cryo-TEM reveals new structural details of Doxil-like PEGylated liposomal doxorubicin formulation. Pharmaceutics, 13 (1), 123. doi: 10.3390/pharmaceutics13010123.
  • Nsairat, H., et al., 2021. Lipid nanostructures for targeting brain cancer. Heliyon, 7 (9), e07994. doi: 10.1016/j.heliyon.2021.e07994.
  • Nsairat, H., et al., 2022. Liposomes: structure, composition, types, and clinical applications. Heliyon, 8 (5), e09394. doi: 10.1016/j.heliyon.2022.e09394.
  • Nsairat, H., et al., 2020. Grafting of anti-nucleolin aptamer into preformed and remotely loaded liposomes through aptamer-cholesterol post-insertion. RSC advances, 10 (59), 36219–36229. doi: 10.1039/d0ra07325c.
  • Odeh, F., et al., 2012. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug delivery, 19 (8), 371–377. doi: 10.3109/10717544.2012.727500.
  • Odeh, F., et al., 2019. Co-encapsulation of thymoquinone with docetaxel enhances the encapsulation efficiency into PEGylated liposomes and the chemosensitivity of MCF7 breast cancer cells to docetaxel. Heliyon, 5 (11), e02919. doi: 10.1016/j.heliyon.2019.e02919.
  • Ohshima, H., 2012. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of colloid stability. In: H. Ohshima, ed. Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. 1st ed. Hoboken, NJ: Wiley Online Library, 27–34.
  • Ohtake, S., et al., 2005. Phase behavior of freeze-dried phospholipid–cholesterol mixtures stabilized with trehalose. Biochimica et biophysica acta, 1713 (1), 57–64. doi: 10.1016/j.bbamem.2005.05.001.
  • Oku, N., et al., 2000. Evaluation of drug targeting strategies and liposomal trafficking. Current pharmaceutical design, 6 (16), 1669–1691. doi: 10.2174/1381612003398816.
  • Olusanya, T.O.B., et al., 2018. Liposomal drug delivery systems and anticancer drugs. Molecules, 23 (4), 907. 14doi: 10.3390/molecules23040907.
  • Ortega, D.D., Pavlakovich, N., and Shon, Y.-S., 2022. Effects of lipid bilayer encapsulation and lipid composition on the catalytic activity and colloidal stability of hydrophobic palladium nanoparticles in water. RSC advances, 12 (34), 21866–21874. doi: 10.1039/d2ra03974e.
  • Pal, A., Sunthar, P., and Khakhar, D.V., 2019. Effects of ethanol addition on the size distribution of liposome suspensions in water. Industrial & engineering chemistry research, 58 (18), 7511–7519. doi: 10.1021/acs.iecr.8b05028.
  • Palazzolo, S., et al., 2018. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. current medicinal chemistry, 25 (34), 4224–4268. doi: 10.2174/0929867324666170830113755.
  • Parmar, K., and Patel, J.K., 2019. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. In: Surface modification of nanoparticles for targeted drug delivery. Cham, Switzerland: Springer.
  • Pasut, G., et al., 2015. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of controlled release, 199, 106–113. doi: 10.1016/j.jconrel.2014.12.008.
  • Patel, D., Patel, B., and Thakkar, H., 2021. Lipid based nanocarriers: promising drug delivery system for topical application. european Journal of lipid science and technology, 123 (5), 2000264. doi: 10.1002/ejlt.202000264.
  • Patel, N.K., and Panda, S., 2012. Liposome drug delivery system: a critic review. Journal of Pharmaceutical Sciences and Bioscientific Research, 2 (4), 169–175.
  • Patra, J.K., et al., 2018. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16 (1), 71. doi: 10.1186/s12951-018-0392-8.
  • Patra, S.K., Alonso, A., and Goñi, F.M., 1998. Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochimica et biophysica acta, 1373 (1), 112–118. doi: 10.1016/s0005-2736(98)00095-9.
  • Pauwels, J., et al., 2022. Mass spectrometry and the cellular surfaceome. Mass spectrometry reviews, 41 (5), 804–841. doi: 10.1002/mas.21690.
  • Pawlikowska-Pawlęga, B., et al., 2014. Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochimica et biophysica acta, 1838 (1 Pt B), 254–265. doi: 10.1016/j.bbamem.2013.08.014.
  • Pawlowska, D., et al., 2019. The impact of alkyl‐chain purity on lipid‐based nucleic acid delivery systems–is the utilization of lipid components with technical grade justified? Chemphyschem : a European journal of chemical physics and physical chemistry, 20 (16), 2110–2121. doi: 10.1002/cphc.201900480.
  • Podolsky, K.A., and Devaraj, N.K., 2021. Synthesis of lipid membranes for artificial cells. Nature reviews. Chemistry, 5 (10), 676–694. doi: 10.1038/s41570-021-00303-3.
  • Popova, A.V., and Hincha, D.K., 2016. Effects of flavonol glycosides on liposome stability during freezing and drying. Biochimica et biophysica acta, 1858 (12), 3050–3060. doi: 10.1016/j.bbamem.2016.09.020.
  • Priev, A., et al., 2002. Determination of critical micelle concentration of lipopolymers and other amphiphiles: comparison of sound velocity and fluorescent measurements. langmuir, 18 (3), 612–617. doi: 10.1021/la0110085.
  • Pucadyil, T.J., et al., 2004. Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Molecular and biochemical parasitology, 133 (2), 145–152. doi: 10.1016/j.molbiopara.2003.10.002.
  • Quispe-Soto, E.T., and Calaf, G.M., 2016. Effect of curcumin and paclitaxel on breast carcinogenesis. International journal of oncology, 49 (6), 2569–2577. doi: 10.3892/ijo.2016.3741.
  • Rajkumar, J., et al., 2021. Recent update on transferosomes as transdermal drug delivery system. Journal of pharmacy and drug innovations, 3 (2), 1–7.
  • Ramrakhiani, L., and Chand, S., 2011. Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Applied biochemistry and biotechnology, 164 (7), 991–1022. doi: 10.1007/s12010-011-9190-6.
  • Readio, J.D., and Bittman, R., 1982. Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochimica et biophysica acta, 685 (2), 219–224. doi: 10.1016/0005-2736(82)90103-1.
  • Rideau, E., et al., 2018. Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical society reviews, 47 (23), 8572–8610. doi: 10.1039/c8cs00162f.
  • Róg, T., et al., 2009. Ordering effects of cholesterol and its analogues. Biochimica et biophysica acta, 1788 (1), 97–121. doi: 10.1016/j.bbamem.2008.08.022.
  • Rousseau, D., Rafanan, R., and Yada, R., 2019. Microemulsions as nanoscale delivery systems. Cambridge, USA: Academic Press.
  • Rousseau, D., Rafanan, R.R., and Yada, R., 2011. 4.55 - Microemulsions as nanoscale delivery systems. In: M. Moo-Young, ed. Comprehensive biotechnology. 2nd ed. Burlington: Academic Press.
  • Routledge, K.E., et al., 2009. Competition between intramolecular and intermolecular interactions in an amyloid-forming protein. Journal of molecular biology, 389 (4), 776–786. doi: 10.1016/j.jmb.2009.04.042.
  • Roy, B., et al., 2016. Influence of lipid composition, pH, and temperature on physicochemical properties of liposomes with curcumin as model drug. Journal of oleo science, 65 (5), 399–411. doi: 10.5650/jos.ess15229.
  • Ruozi, B., et al., 2005. Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes. European journal of pharmaceutical sciences : official journal of the European Federation for pharmaceutical sciences, 25 (1), 81–89. doi: 10.1016/j.ejps.2005.01.020.
  • Sadeghi, N., et al., 2018. Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. International journal of pharmaceutics, 548 (2), 778–782. doi: 10.1016/j.ijpharm.2017.11.002.
  • Sahoo, S.K., and Labhasetwar, V., 2003. Nanotech approaches to drug delivery and imaging. Drug discovery today, 8 (24), 1112–1120. doi: 10.1016/s1359-6446(03)02903-9.
  • Salimi, A., 2018. Liposomes as a novel drug delivery system: fundamental and pharmaceutical application. Asian Journal of pharmaceutics, 12, 31–41.
  • Samad, A., Sultana, Y., and Aqil, M., 2007. Liposomal drug delivery systems: an update review. Current drug delivery, 4 (4), 297–305. doi: 10.2174/156720107782151269.
  • Sampedro, F., et al., 1994. Liposomes as carriers of different new lipophilic antitumour drugs: a preliminary report. Journal of microencapsulation, 11 (3), 309–318. doi: 10.3109/02652049409040460.
  • Saraf, S., et al., 2019. Skin targeting approaches in cosmetics. Indian journal of pharmaceutical education and research, 53 (4), 577–594. doi: 10.5530/ijper.53.4.119.
  • Scheideler, M., Vidakovic, I., and Prassl, R., 2020. Lipid nanocarriers for microRNA delivery. Chemistry and physics of lipids, 226, 104837. doi: 10.1016/j.chemphyslip.2019.104837.
  • Schwendener, R.A., and Schott, H., 2010. Liposome formulations of hydrophobic drugs. Methods in molecular biology (Clifton, N.J.), 605, 129–138. doi: 10.1007/978-1-60327-360-2_8.
  • Sercombe, L., et al., 2015. Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology, 6, 286. doi: 10.3389/fphar.2015.00286.
  • Shahidulla, S., and Yameen, S.H., 2022. Transferosomes-a highly permeable nanocarriers of drugs for transdermal drug delivery. World Journal of Pharmacy and Pharmaceutical Sciences, 11 (9), 509–527. doi: 10.20959/wjpps20229-23074
  • Shaker, S., Gardouh, A.R., and Ghorab, M.M., 2017. Factors affecting liposomes particle size prepared by ethanol injection method. Research in pharmaceutical sciences, 12 (5), 346–352. doi: 10.4103/1735-5362.213979.
  • Shao, X.-R., et al., 2017. Effects of micro-environmental pH of liposome on chemical stability of loaded drug. Nanoscale research letters, 12 (1), 504. doi: 10.1186/s11671-017-2256-9.
  • Shariare, M.H., et al., 2022. Development of stable liposomal drug delivery system of thymoquinone and its in vitro anticancer studies using breast cancer and cervical cancer cell lines. Molecules, 27 (19), 6744. doi: 10.3390/molecules27196744.
  • Shaw, D.J., 1992a. 7 - Charged interfaces. In: D.J. Shaw, ed. Introduction to colloid and surface chemistry. 4th ed. Oxford: Butterworth-Heinemann.
  • Shaw, D.J., 1992b. 8 - Colloid stability. In: D.J. Shaw, ed. Introduction to colloid and surface chemistry. 4th ed. Oxford: Butterworth-Heinemann.
  • Shen, S., et al., 2017. High drug-loading nanomedicines: progress, current status, and prospects. International journal of nanomedicine, 12, 4085–4109. doi: 10.2147/IJN.S132780.
  • Shi, L., et al., 2021. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. nanoscale, 13 (24), 10748–10764. doi: 10.1039/d1nr02065j.
  • Shimizu, K., et al., 2010. Temperature-dependent transfer of amphotericin B from liposomal membrane of AmBisome to fungal cell membrane. Journal of controlled release : official journal of the controlled release society, 141 (2), 208–215. doi: 10.1016/j.jconrel.2009.09.019.
  • Simões, S., et al., 2004. On the formulation of pH-sensitive liposomes with long circulation times. Advanced drug delivery reviews, 56 (7), 947–965. doi: 10.1016/j.addr.2003.10.038.
  • Socaciu, C., Jessel, R., and Diehl, H.A., 2000. Competitive carotenoid and cholesterol incorporation into liposomes: effects on membrane phase transition, fluidity, polarity and anisotropy. Chemistry and physics of lipids, 106 (1), 79–88. doi: 10.1016/s0009-3084(00)00135-3.
  • Soliman, G.A., 2022. Nutrition and cholesterol metabolism. In: Cholesterol. Cambridge, USA: Academic Press.
  • Song, F., et al., 2022. Effect of sterols on liposomes: membrane characteristics and physicochemical changes during storage. LWT, 164, 113558. doi: 10.1016/j.lwt.2022.113558.
  • Song, J., and Waugh, R.E., 1993. Bending rigidity of SOPC membranes containing cholesterol. Biophysical journal, 64 (6), 1967–1970. doi: 10.1016/S0006-3495(93)81566-2.
  • Spyratou, E., et al., 2009. Atomic force microscopy: a tool to study the structure, dynamics and stability of liposomal drug delivery systems. Expert opinion on drug delivery, 6 (3), 305–317. doi: 10.1517/17425240902828312.
  • Sriwidodo Umar, A.K., et al., 2022. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon, 8 (2), e08934. doi: 10.1016/j.heliyon.2022.e08934.
  • Stern, T., et al., 2017. Rigidity of polymer micelles affects interactions with tumor cells. Journal of controlled release : official journal of the controlled release society, 257, 40–50. doi: 10.1016/j.jconrel.2016.12.013.
  • Stone, N.R., et al., 2016. Liposomal amphotericin b (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs, 76 (4), 485–500. doi: 10.1007/s40265-016-0538-7.
  • Stuart, M., and Boekema, E., 2007. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochimica et biophysica acta, 1768 (11), 2681–2689. doi: 10.1016/j.bbamem.2007.06.024.
  • Sudimack, J.J., et al., 2002. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochimica et biophysica acta, 1564 (1), 31–37. doi: 10.1016/s0005-2736(02)00399-1.
  • Sułkowski, W.W., et al., 2005. The influence of temperature, cholesterol content and pH on liposome stability. Journal of molecular structure, 744–747, 737–747. doi: 10.1016/j.molstruc.2004.11.075.
  • Sun, J., et al., 2015. Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Advanced materials (deerfield beach, fla.), 27 (8), 1402–1407. doi: 10.1002/adma.201404788.
  • Swana, K.W., Camesano, T.A., and Nagarajan, R., 2022. Formation of a fully anionic supported lipid bilayer to model bacterial inner membrane for QCM-D studies. membranes, 12 (6), 558. doi: 10.3390/membranes12060558.
  • Taha, E.I., et al., 2014. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi pharmaceutical society, 22 (3), 231–239. doi: 10.1016/j.jsps.2013.07.003.
  • Tai, K., et al., 2018. The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: stability, structure and membrane characteristics. Food research international (Ottawa, Ont.), 109, 24–34. doi: 10.1016/j.foodres.2018.04.014.
  • Tai, K., et al., 2019. Effect of β-sitosterol on the curcumin-loaded liposomes: vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food chemistry, 293, 92–102. doi: 10.1016/j.foodchem.2019.04.077.
  • Taira, M.C., et al., 2004. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug delivery, 11 (2), 123–128. doi: 10.1080/10717540490280769.
  • Takechi-Haraya, Y., et al., 2016. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir : the ACS journal of surfaces and colloids, 32 (24), 6074–6082. doi: 10.1021/acs.langmuir.6b00741.
  • Tenchov, R., et al., 2021. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS nano, 15 (11), 16982–17015. doi: 10.1021/acsnano.1c04996.
  • Tonggu, L., and Wang, L., 2020. Cryo-EM sample preparation method for extremely low concentration liposomes. Ultramicroscopy, 208, 112849. doi: 10.1016/j.ultramic.2019.112849.
  • Tóth, M.E., Vígh, L., and Sántha, M., 2014. Alcohol stress, membranes, and chaperones. Cell stress & chaperones, 19 (3), 299–309. doi: 10.1007/s12192-013-0472-5.
  • Tristram-Nagle, S., 2009. Structure and bending rigidity of fully hydrated lipid bilayers with added peptides and cholesterol using diffuse x-ray scattering. Biophysical Journal, 96 (3), 1a. doi: 10.1016/j.bpj.2008.12.010.
  • Uchegbu, I.F., and Florence, A.T., 1995. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Advances in colloid and interface science, 58 (1), 1–55. doi: 10.1016/0001-8686(95)00242-I.
  • Van Hoogevest, P., and Wendel, A., 2014. The use of natural and synthetic phospholipids as pharmaceutical excipients. European journal of lipid science and technology : EJLST, 116 (9), 1088–1107. doi: 10.1002/ejlt.201400219.
  • Vemuri, S., and Rhodes, C.T., 1995. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica acta helvetiae, 70 (2), 95–111. doi: 10.1016/0031-6865(95)00010-7.
  • Vermehren, C., et al., 2003. In vitro and in vivo aspects of N-acyl-phosphatidylethanolamine-containing liposomes. International journal of pharmaceutics, 254 (1), 49–53. doi: 10.1016/s0378-5173(02)00681-6.
  • Verwey, E.J.W., 1947. Theory of the stability of lyophobic colloids. The Journal of physical and colloid chemistry, 51 (3), 631–636. doi: 10.1021/j150453a001.
  • Wang, C., et al., 2016. JD enhances the anti-tumour effects of low-dose paclitaxel on gastric cancer MKN45 cells both in vitro and in vivo. Cancer chemotherapy and pharmacology, 78 (5), 971–982. doi: 10.1007/s00280-016-3149-9.
  • Wang, M., et al., 2019a. Improving the anti-keloid outcomes through liposomes loading paclitaxel-cholesterol complexes. International journal of nanomedicine, 14, 1385–1400. doi: 10.2147/IJN.S195375.
  • Wang, N., et al., 2009. Modulation of the physicochemical state of interior agents to prepare controlled release liposomes. Colloids and surfaces. b, biointerfaces, 69 (2), 232–238. doi: 10.1016/j.colsurfb.2008.11.033.
  • Wang, W.L., et al., 2019b. Robustness of signal detection in cryo-electron microscopy via a bi-objective-function approach. BMC bioinformatics, 20 (1), 169. doi: 10.1186/s12859-019-2714-8.
  • Weissmann, G., et al., 1976. Membrane perturbation: studies employing a calcium-sensitive dye, arsenazo III, in liposomes. Proceedings of the national academy of sciences of the united states of america, 73 (2), 510–514. doi: 10.1073/pnas.73.2.510.
  • Wilson, B., Ramanathan, A., and Lopez, C., 2019. Cardiolipin-dependent properties of model mitochondrial membranes from molecular dynamics simulations. Biophysical Journal, 117 (3), 429–444. doi: 10.1016/j.bpj.2019.06.023.
  • Witika, B.A., et al., 2022. Current advances in specialised niosomal drug delivery: manufacture, characterization and drug delivery applications. International Journal of molecular sciences, 23 (17), 9668. doi: 10.3390/ijms23179668.
  • Woodle, M.C., 1998. Controlling liposome blood clearance by surface-grafted polymers. Advanced drug delivery reviews, 32 (1-2), 139–152. doi: 10.1016/s0169-409x(97)00136-1.
  • Wu, H., et al., 2019. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta pharmaceutica sinica. B, 9 (4), 858–870. doi: 10.1016/j.apsb.2019.02.010.
  • Wu, X., et al., 2021. Early prevention of complex decongestive therapy and rehabilitation exercise for prevention of lower extremity lymphedema after operation of gynecologic cancer. Asian journal of surgery, 44 (1), 111–115. doi: 10.1016/j.asjsur.2020.03.022.
  • Xu, Y., Michalowski, C.B., and Beloqui, A., 2021. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Current opinion in colloid & interface science, 52, 101414. doi: 10.1016/j.cocis.2020.101414.
  • Yadav, A.V., et al., 2011. Stability aspects of liposome. Indian Journal of Pharmaceutical Education and Research, 45, 402–413.
  • Yang, S.T., et al., 2016. The role of cholesterol in membrane fusion. Chemistry and physics of lipids, 199, 136–143. doi: 10.1016/j.chemphyslip.2016.05.003.
  • Zaman, M.F., et al., 2020. Sticking with it: ER-PM membrane contact sites as a coordinating nexus for regulating lipids and proteins at the cell cortex. Frontiers in cell and developmental biology, 8, 675. doi: 10.3389/fcell.2020.00675.
  • Zeng, H., et al., 2021. Nanomaterials toward the treatment of Alzheimer’s disease: recent advances and future trends. Chinese chemical letters, 32 (6), 1857–1868. doi: 10.1016/j.cclet.2021.01.014.
  • Zhang, G., et al., 2009. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials, 30 (10), 1928–1936. doi: 10.1016/j.biomaterials.2008.12.038.
  • Zhao, L., and Feng, S.S., 2006. Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air-water interface. Journal of colloid and interface science, 300 (1), 314–326. doi: 10.1016/j.jcis.2006.03.035.
  • Zhao, L., Feng, S.S., and Go, M.L., 2004. Investigation of molecular interactions between paclitaxel and DPPC by langmuir film balance and differential scanning calorimetry. Journal of pharmaceutical sciences, 93 (1), 86–98. doi: 10.1002/jps.10523.
  • Zhao, L., et al., 2007. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. international journal of pharmaceutics, 338 (1–2), 258–266. doi: 10.1016/j.ijpharm.2007.01.045.
  • Zhen, Y., et al., 2021. Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Scientific Reports 11 (1), 7311. doi: 10.1038/s41598-021-86484-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.