112
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacokinetics and pharmacodynamic evaluation of hyaluronic acid-modified imatinib-loaded PEGylated liposomes in CD44-positive Gist882 tumor-bearing mice

&
Pages 97-112 | Received 02 May 2023, Accepted 14 Jun 2023, Published online: 04 Jul 2023

References

  • Arpicco, S., et al., 2013. Hyaluronic acid-coated liposomes for active targeting of gemcitabine. European journal of pharmaceutics and biopharmaceutics : official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.V, 85 (3 Pt A), 373–380. doi: 10.1016/j.ejpb.2013.06.003.
  • Blay, J.Y., et al., 2005. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20-21 March 2004, under the auspices of ESMO. Annals of oncology : official journal of the European Society for Medical Oncology, 16 (4), 566–578. doi: 10.1093/annonc/mdi127.
  • Chan, K.H., et al., 2006. Gastrointestinal stromal tumors in a cohort of Chinese patients in Hong Kong. World journal of gastroenterology, 12 (14), 2223–2228. doi: 10.3748/wjg.v12.i14.2223.
  • Chi, Y., et al., 2017. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. Journal of controlled release : official journal of the Controlled Release Society, 261, 113–125. doi: 10.1016/j.jconrel.2017.06.027.
  • Cho, M.Y., et al., 2010. Current trends in the epidemiological and pathological characteristics of gastrointestinal stromal tumors in Korea, 2003-2004. Journal of Korean medical science, 25 (6), 853–862. doi: 10.3346/jkms.2010.25.6.853.
  • Çoban, Ö., et al., 2019. Efficacy of targeted liposomes and nanocochleates containing imatinib plus dexketoprofen against fibrosarcoma. Drug development research, 80 (5), 556–565. doi: 10.1002/ddr.21530.
  • Debiec-Rychter, M., et al., 2005. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology, 128 (2), 270–279. doi: 10.1053/j.gastro.2004.11.020.
  • Dematteo, R.P., et al., 2000. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Annals of surgery, 231 (1), 51–58. doi: 10.1097/00000658-200001000-00008.
  • Demetri, G.D., et al., 2009. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clinical cancer research : an official journal of the American Association for Cancer Research, 15 (18), 5902–5909. doi: 10.1158/1078-0432.CCR-09-0482.
  • Demetri, G.D., et al., 2013. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet (London, England), 381 (9863), 295–302. doi: 10.1016/S0140-6736(12)61857-1.
  • Deshpande, P.P., Biswas, S., and Torchilin, V.P., 2013. Current trends in the use of liposomes for tumor targeting. Nanomedicine (London, England), 8 (9), 1509–1528. doi: 10.2217/nnm.13.118.
  • Doherty, G.J. and Mcmahon, H.T., 2009. Mechanisms of endocytosis. Annual review of biochemistry, 78, 857–902. doi: 10.1146/annurev.biochem.78.081307.110540.
  • Dosio, F., et al., 2016. Hyaluronic acid for anticancer drug and nucleic acid delivery. Advanced drug delivery reviews, 97, 204–236. doi: 10.1016/j.addr.2015.11.011.
  • Ducimetière, F., et al., 2011. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One, 6 (8), e20294. doi: 10.1371/journal.pone.0020294.
  • Emile, J.F., et al., 2012. Frequencies of KIT and PDGFRA mutations in the MolecGIST prospective population-based study differ from those of advanced GISTs. Medical oncology (Northwood, London, England), 29 (3), 1765–1772. doi: 10.1007/s12032-011-0074-y.
  • Gao, Y., et al., 2015. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma. Scientific reports, 5, 11365. doi: 10.1038/srep11365.
  • Gramza, A.W., Corless, C.L., and Heinrich, M.C., 2009. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clinical cancer research : an official journal of the American Association for Cancer Research, 15 (24), 7510–7518. doi: 10.1158/1078-0432.CCR-09-0190.
  • Heinrich, M.C., et al., 2003. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 21 (23), 4342–4349. doi: 10.1200/JCO.2003.04.190.
  • Hong, X., et al., 2006. Gastrointestinal stromal tumor: role of CT in diagnosis and in response evaluation and surveillance after treatment with imatinib. Radiographics : a review publication of the Radiological Society of North America, Inc, 26 (2), 481–495. doi: 10.1148/rg.262055097.
  • Hsu, K.H., et al., 2010. Osteopontin expression is an independent adverse prognostic factor in resectable gastrointestinal stromal tumor and its interaction with CD44 promotes tumor proliferation. Annals of surgical oncology, 17 (11), 3043–3052. doi: 10.1245/s10434-010-1143-8.
  • Jain, A., and Jain, S.K., 2018. Stimuli-responsive smart liposomes in cancer targeting. Current drug targets, 19 (3), 259–270. doi: 10.2174/1389450117666160208144143.
  • Jhaveri, A., Deshpande, P., and Torchilin, V., 2014. Stimuli-sensitive nanopreparations for combination cancer therapy. Journal of controlled release : official journal of the Controlled Release Society, 190, 352–370. doi: 10.1016/j.jconrel.2014.05.002.
  • Joensuu, H., et al., 2012. Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. The lancet oncology, 13 (3), 265–274. doi: 10.1016/S1470-2045(11)70299-6.
  • Jose, A., et al., 2019. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. Journal of liposome research, 29 (2), 153–162. doi: 10.1080/08982104.2018.1502315.
  • Kim, H.S., et al., 2002. Expression of CD44 isoforms correlates with the metastatic potential of osteosarcoma. Clinical orthopaedics and related research, 396, 184–190. doi: 10.1097/00003086-200203000-00028.
  • Lammers, T., et al., 2016. Cancer nanomedicine: is targeting our target? Nature reviews materials, 1 (9), 16069.
  • Le Cesne, A., et al., 2013. Optimizing tyrosine kinase inhibitor therapy in gastrointestinal stromal tumors: exploring the benefits of continuous kinase suppression. The oncologist, 18 (11), 1192–1199. doi: 10.1634/theoncologist.2012-0361.
  • Liegl, B., et al., 2008. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. The journal of pathology, 216 (1), 64–74. doi: 10.1002/path.2382.
  • Ma, B., et al., 2022. Relationship between Ki-67 and CD44 expression and microvascular formation in gastric stromal tumor tissues. World journal of clinical cases, 10 (2), 469–476. doi: 10.12998/wjcc.v10.i2.469.
  • Maeda, H., 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation, 41, 189–207. doi: 10.1016/s0065-2571(00)00013-3.
  • Maruyama, K., 2011. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Advanced drug delivery reviews, 63 (3), 161–169. doi: 10.1016/j.addr.2010.09.003.
  • Mendonça, L.S., et al., 2010. Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnology and bioengineering, 107 (5), 884–893. doi: 10.1002/bit.22858.
  • Miettinen, M., and Lasota, J., 2011. Histopathology of gastrointestinal stromal tumor. Journal of surgical oncology, 104 (8), 865–873. doi: 10.1002/jso.21945.
  • Mitragotri, S., et al., 2017. Drug delivery research for the future: expanding the nano horizons and beyond. Journal of controlled release : official journal of the Controlled Release Society, 246, 183–184. doi: 10.1016/j.jconrel.2017.01.011.
  • Montgomery, E., et al., 2004. CD44 loss in gastric stromal tumors as a prognostic marker. The American journal of surgical pathology, 28 (2), 168–177. doi: 10.1097/00000478-200402000-00003.
  • Mucciarini, C., et al., 2007. Incidence and clinicopathologic features of gastrointestinal stromal tumors. A population-based study. BMC cancer, 7, 230. doi: 10.1186/1471-2407-7-230.
  • Negi, L.M., et al., 2019. Hyaluronated imatinib liposomes with hybrid approach to target CD44 and P-gp overexpressing MDR cancer: an in-vitro, in-vivo and mechanistic investigation. Journal of drug targeting, 27 (2), 183–192. doi: 10.1080/1061186X.2018.1497039.
  • Nilsson, B., et al., 2005. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era–a population-based study in western Sweden. Cancer, 103 (4), 821–829. doi: 10.1002/cncr.20862.
  • Park, J.H., et al., 2014. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. Journal of controlled release: official journal of the Controlled Release Society, 174, 98–108. doi: 10.1016/j.jconrel.2013.11.016.
  • Paulis, Y.W., et al., 2015. CD44 enhances tumor aggressiveness by promoting tumor cell plasticity. Oncotarget, 6 (23), 19634–19646. doi: 10.18632/oncotarget.3839.
  • Petros, R.A., and Desimone, J.M., 2010. Strategies in the design of nanoparticles for therapeutic applications. Nature reviews. Drug discovery, 9 (8), 615–627. doi: 10.1038/nrd2591.
  • Qhattal, H.S., et al., 2014. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS nano, 8 (6), 5423–5440. doi: 10.1021/nn405839n.
  • Qhattal, H.S., and Liu, X., 2011. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Molecular pharmaceutics, 8 (4), 1233–1246. doi: 10.1021/mp2000428.
  • Tahara, E., 1995. Molecular biology of gastric cancer. World journal of surgery, 19 (4), 484–488. discussion 89-90. doi: 10.1007/BF00294705.
  • Torchilin, V.P., 2014. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature reviews Drug discovery, 13 (11), 813–827. doi: 10.1038/nrd4333.
  • Tran, T., Davila, J.A., and El-Serag, H.B., 2005. The epidemiology of malignant gastrointestinal stromal tumors: an analysis of 1,458 cases from 1992 to 2000. The American journal of gastroenterology, 100 (1), 162–168. doi: 10.1111/j.1572-0241.2005.40709.x.
  • Varshosaz, J., et al., 2021. Co-delivery of rituximab targeted curcumin and imatinib nanostructured lipid carriers in non-Hodgkin lymphoma cells. Journal of liposome research, 31 (1), 64–78. doi: 10.1080/08982104.2020.1720718.
  • Wagner, V., et al., 2006. The emerging nanomedicine landscape. Nature biotechnology, 24 (10), 1211–1217. doi: 10.1038/nbt1006-1211.
  • Waller, C.F., 2018. Imatinib mesylate. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 212, 1–27.
  • Woodall, C.E., 3rd., et al., 2009. An evaluation of 2537 gastrointestinal stromal tumors for a proposed clinical staging system. Archives of surgery (Chicago, Ill. : 1960), 144 (7), 670–678. 2nd doi: 10.1001/archsurg.2009.108.
  • Yin, X., et al., 2017. Chitooligosaccharides modified reduction-sensitive liposomes: enhanced cytoplasmic drug delivery and osteosarcomas-tumor inhibition in animal models. Pharmaceutical research, 34 (10), 2172–2184. doi: 10.1007/s11095-017-2225-0.
  • Zhang, F., et al., 2018. Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology, 513, 195–207. doi: 10.1016/j.virol.2017.09.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.