260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The presence of uncoated gold nanoparticle aggregates may alter the phase of phosphatidylcholine lipid as evidenced by vibrational spectroscopies

, , , , , , , & show all
Pages 113-123 | Received 20 May 2023, Accepted 18 Jul 2023, Published online: 26 Jul 2023

References

  • Al-Ahmady, Z., et al., 2016. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. International journal of pharmaceutics, 514 (1), 133–141.
  • Al-Ahmady, Z.S., et al., 2019. Enhanced intraliposomal metallic nanoparticle payload capacity using microfluidic-assisted self-assembly. Langmuir, 35 (41), 13318–13331. doi: 10.1021/acs.langmuir.9b00579.
  • Alrbyawi, H., et al., 2022. pH-sensitive liposomes for enhanced cellular uptake and cytotoxicity of daunorubicin in melanoma (B16-BL6) cell lines. Pharmaceutics, 14 (6), 1128. 1128,doi: 10.3390/pharmaceutics14061128.
  • Ataka, K., Stripp, S.T., and Heberle, J., 2013. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochimica et biophysica acta (bba) - biomembranes, 1828 (10), 2283–2293. doi: 10.1016/j.bbamem.2013.04.026.
  • Bell, S.E.J., et al., 2020. Towards reliable and quantitative surface-enhanced Raman scattering (sers): from key parameters to good analytical practice. Angewandte chemie international edition, 59 (14), 5454–5462. doi: 10.1002/anie.201908154.
  • Blume, G. and Cevc, G., 1990. Liposomes for the sustained drug release in vivo. Biochimica Et Biophysica Acta, 1029 (1), 91–97.
  • Buckingham, A.D., 1956. A theory of the dielectric polarization of polar substances. Proceedings of the royal society of london. series a. mathematical and physical sciences, 238 (1213), 235–244.
  • Cameron, D.G., Casal, H.L., and Mantsch, H.H., 1980. Characterization of the pretransition in 1, 2-dipalmitoyl-Sn-glycero-3-phosphocholine by fourier transform infrared spectroscopy. Biochemistry, 19 (16), 3665–3672. doi: 10.1021/bi00557a005.
  • Casal, H.L. and Mantsch, H.H., 1983. The thermotropic phase behavior of N-methylated dipalmitoylphosphatidylethanolamines. Biochimica Et biophysica acta, 735 (3), 387–396. doi: 10.1016/0005-2736(83)90153-0.
  • Casal, H.L. and Mantsch, H.H., 1984. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochimica Et biophysica acta, 779 (4), 381–401. doi: 10.1016/0304-4157(84)90017-0.
  • Casals, E., et al., 2003. Atomic force microscopy of liposomes bearing fibrinogen. Bioconjugate chemistry, 14 (3), 593–600. doi: 10.1021/bc025641t.
  • Chaudhari, V.S., Murty, U.S., and Banerjee, S., 2020. Lipidic nanomaterials to deliver natural compounds against cancer: a review. Environmental chemistry letters, 18 (6), 1803–1812. doi: 10.1007/s10311-020-01042-5.
  • Chaudhary, N., Weissman, D., and Whitehead, K.A., 2021. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature reviews. drug discovery, 20 (11), 817–838. doi: 10.1038/s41573-021-00283-5.
  • Contini, C., et al., 2020. Size dependency of gold nanoparticles interacting with model membranes. Communications chemistry, 3 (1), 130. doi: 10.1038/s42004-020-00377-y.
  • Czamara, K., et al., 2015. Raman spectroscopy of lipids: a review. Journal of raman spectroscopy, 46 (1), 4–20. doi: 10.1002/jrs.4607.
  • Do, H.D., et al., 2020. Development of theranostic cationic liposomes designed for image-guided delivery of nucleic acid. Pharmaceutics, 12 (9), 1–23. doi: 10.3390/pharmaceutics12090854.
  • Engstrom, A.M., et al., 2020. Size-dependent interactions of lipid-coated gold nanoparticles: Developing a better mechanistic understanding through model cell membranes and in vivo toxicity. International journal of nanomedicine, 15, 4091–4104. doi: 10.2147/IJN.S249622.
  • Menges, F., 2015. Spectragryph – optical spectroscopy software 1.2.15 [accessed 08.04.2023].
  • Fajardo-Ortiz, D., et al., 2014. Liposomes versus metallic nanostructures: Differences in the process of knowledge translation in cancer. International journal of nanomedicine, 9 (1), 2627–2634. doi: 10.2147/IJN.S62315.
  • Ferreira, D.D.S., et al., 2013. pH-sensitive liposomes for drug delivery in cancer treatment. Therapeutic delivery, 4 (9), 1099–1123. doi: 10.4155/tde.13.80.
  • Figueiredo, S., et al., 2014. Conjugation of Gold nanoparticles and liposomes for combined vehicles of drug delivery in cancer outline. In: Nanomedicine. 48–82.
  • Forstner, M.B., et al., 2006. Lipid lateral mobility and membrane phase structure modulation by protein binding. Journal of the american chemical society, 128 (47), 15221–15227. doi: 10.1021/ja064093h.
  • Fringeli, U.P. and Günthard, H.H., 1981. Infrared membrane spectroscopy. Molecular biology, biochemistry, and biophysics, 31, 270–332. doi: 10.1007/978-3-642-81537-9_6.
  • Gabbutt, C., et al., 2019. AFM nanoindentation reveals decrease of elastic modulus of lipid bilayers near freezing point of water. Scientific reports, 9 (1), 19473. doi: 10.1038/s41598-019-55519-7.
  • Garcia-Manyes, S., Oncins, G., and Sanz, F., 2005. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophysical Journal, 89 (3), 1812–1826. doi: 10.1529/biophysj.105.064030.
  • García, M.C., et al., 2022. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. International journal of pharmaceutics, 619 (October 2021), 121691–121691, 13. doi: 10.1016/j.ijpharm.2022.121691.
  • Gonzalez Gomez, A. and Hosseinidoust, Z., 2020. Liposomes for Antibiotic Encapsulation and Delivery. ACS infectious diseases, 6 (5), 896–908. doi: 10.1021/acsinfecdis.9b00357.
  • Gonzalez Gomez, A., et al., 2019. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS omega, 4 (6), 10866–10876. doi: 10.1021/acsomega.9b00825.
  • Grdadolnik, J., and Hadži, D., 1998. FT infrared and Raman investigation of saccharide-phosphatidylcholine interactions using novel structure probes. Spectrochimica Acta. Part A, molecular and biomolecular spectroscopy, 54A (12), 1989–2000. doi: 10.1016/s1386-1425(98)00111-5.
  • Guimarães, D., Cavaco-Paulo, A., and Nogueira, E., 2021. Design of liposomes as drug delivery system for therapeutic applications. International journal of pharmaceutics, 601 (March), 120571–120571, 15. doi: 10.1016/j.ijpharm.2021.120571.
  • Hamilton, D. J., et al., 2016. Lipid-coated gold nanoparticles as probes for membrane binding. In: A. Shukla, ed. Membrane Proteins: Chemical and Synthetic Approaches. Springer Science + Business Media, LLC 2016, 1–16.
  • Hao, G., Xu, Z.P., and Li, L., 2018. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC advances, 8 (39), 22182–22192. doi: 10.1039/c8ra02095g.
  • Heimburg, T., 2007. Thermal Biophysics of Membranes. Weinheim: Wiley.
  • Hwang, J.Y., Li, Z., and Loh, X.J., 2016. Small molecule therapeutic-loaded liposomes as therapeutic carriers: From development to clinical applications. RSC advances, 6 (74), 70592–70615. doi: 10.1039/C6RA09854A.
  • Imashiro, C., et al., 2021. Development of accurate temperature regulation culture system with metallic culture vessel demonstrates different thermal cytotoxicity in cancer and normal cells. Scientific reports, 11 (1), 21466–21466, 12. doi: 10.1038/s41598-021-00908-0.
  • Jash, A., Ubeyitogullari, A., and Rizvi, S.S.H., 2021. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. Journal of materials chemistry. B, 9 (24), 4773–4792. doi: 10.1039/d1tb00126d.
  • Jaumot, J., et al., 2005. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemometrics and intelligent laboratory systems, 76 (1), 101–110. doi: 10.1016/j.chemolab.2004.12.007.
  • Javed, R., et al., 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of nanobiotechnology, 18 (1), 172. doi: 10.1186/s12951-020-00704-4.
  • De Juan, A., Jaumot, J., and Tauler, R., 2014. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Analytical methods, 6 (14), 4964–4976. doi: 10.1039/C4AY00571F.
  • Keller, H.R. and Massart, D.L., 1991. Evolving factor analysis. Chemometrics and intelligent laboratory systems, 12 (3), 209–224. doi: 10.1016/0169-7439(92)80002-L.
  • Knapp, J.P., et al., 2022. Tumor temperature: friend or foe of virus-based cancer immunotherapy. Biomedicines, 10 (8), 1–22. doi: 10.3390/biomedicines10082024.
  • Kneidl, B., et al., 2014. Thermosensitive liposomal drug delivery systems: state of the art review. International journal of nanomedicine, 9, 4387–4398. doi: 10.2147/IJN.S49297.
  • Koide, H., et al., 2022. Easy preparation of a liposome-mediated protein delivery system by freeze-thawing a liposome-protein complex. Journal of materials chemistry. B, 10 (35), 6768–6776. doi: 10.1039/d2tb00271j.
  • Landon, C.D., et al., 2011. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature- sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. The open nanomedicine journal, 3, 38–64. doi: 10.2174/1875933501103010038.
  • Langer, J., et al., 2020. Present and future of surface-enhanced Raman scattering. ACS nano, 14 (1), 28–117. doi: 10.1021/acsnano.9b04224.
  • Lee, J.H., et al., 2016. General and programmable synthesis of hybrid liposome/metal nanoparticles. Science advances, 2 (12), e1601838, e1601838. doi: 10.1126/sciadv.1601838.
  • Leriche, G., et al., 2017. Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Organic & biomolecular chemistry, 15 (10), 2157–2162. doi: 10.1039/c6ob02832b.
  • Lewis, R. N. A. H., Mannock, D. A., and McElhaney, R. N., 2006. Differential scanning calorimetry in the study of lipid phase transitions in model and biological membranes. In: A.M. Dopico, ed. Methods in Membrane Lipids. New Jersey: Humana Press, 171–195.
  • Lewis, R.N.A.H. and McElhaney, R.N., 2013. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Biochimica Et biophysica acta, 1828 (10), 2347–2358. doi: 10.1016/j.bbamem.2012.10.018.
  • Li, Q., Li, X., and Zhao, C., 2020. Strategies to obtain encapsulation and controlled release of small hydrophilic molecules. Frontiers in bioengineering and biotechnology, 8 (May), 437. doi: 10.3389/fbioe.2020.00437.
  • Liu, Y., Castro Bravo, K.M., and Liu, J., 2021. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale horizons, 6 (2), 78–94. doi: 10.1039/d0nh00605j.
  • Lorenz-Fonfria, V.A., 2020. Infrared difference spectroscopy of proteins: from bands to bonds. Chemical reviews, 120 (7), 3466–3576. doi: 10.1021/acs.chemrev.9b00449.
  • Maeder, M. and de Juan, A., 2009. Two-way data analysis: evolving factor analysis. Comprehensive chemometrics, 2, 261–274.
  • Maleš, P., et al., 2021. Application of MCR-ALS with EFA on FT-IR spectra of lipid bilayers in the assessment of phase transition temperatures: Potential for discernment of coupled events. Colloids and surfaces. B, biointerfaces, 201 (January), 111645–111648. doi: 10.1016/j.colsurfb.2021.111645.
  • Maleš, P., et al., 2022. New spirit of an old technique: characterization of lipid phase transitions via UV/Vis spectroscopy. Spectrochimica acta part A, 272, 121013, 7. doi: 10.1016/j.saa.2022.121013.
  • Maleš, P., et al., 2023. Influence of DPPE surface undulations on melting temperature determination: UV/Vis spectroscopic and MD study. Biochimica Et Biophysica Acta. Biomembranes, 1865 (1), 184072, 9. doi: 10.1016/j.bbamem.2022.184072.
  • Maleš, P., et al., 2022. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. Soft matter, 18 (35), 6703–6715. doi: 10.1039/d2sm00878e.
  • Mathiyazhakan, M., Wiraja, C., and Xu, C., 2018. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-micro letters, 10 (1), 10. doi: 10.1007/s40820-017-0166-0.
  • Matsuura-Sawada, Y., et al., 2023. Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device. Biomaterials science, 11 (7), 2419–2426. doi: 10.1039/d2bm01703b.
  • Mayerhöfer, T.G., and Popp, J., 2020. Beyond Beer’s Law: revisiting the lorentz-lorenz equation. Chemphyschem , 21 (12), 1218–1223. doi: 10.1002/cphc.202000301.
  • Memon, A.G., et al., 2022. Citrate-capped AuNP fabrication, characterization and comparison with commercially produced nanoparticles. Crystals, 12 (12), 1747. doi: 10.3390/cryst12121747.
  • Moskovits, M., 1982. Surface selection rules. The journal of chemical physics, 77 (9), 4408–4416. doi: 10.1063/1.444442.
  • Musielak, M., et al., 2021. The combination of liposomes and metallic nanoparticles as multifunctional nanostructures in the therapy and medical imaging—a review. International journal of molecular sciences, 22 (12), 24. 6229, doi: 10.3390/ijms22126229.
  • Needham, D. and Dewhirst, M.W., 2001. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Advanced drug delivery reviews, 53 (3), 285–305. doi: 10.1016/s0169-409x(01)00233-2.
  • Pašalić, L., Pem, B., and Bakarić, D., 2023. Lamellarity-driven differences in surface structural features of DPPS lipids: spectroscopic, calorimetric and computational study. Membranes, 2023 (13), 22. 83, doi: 10.3390/membranes13010083.
  • Pašalić, L., et al., 2023. Interaction of guanidinium and ammonium cations with phosphatidylcholine and phosphatidylserine lipid bilayers – calorimetric, spectroscopic and molecular dynamics simulations study. Biochimica Et Biophysica Acta. Biomembranes, 1865 (4), 184122, 12. doi: 10.1016/j.bbamem.2023.184122.
  • Pérez-Jiménez, A.I., et al., 2020. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical science, 11 (18), 4563–4577. doi: 10.1039/d0sc00809e.
  • Rehman, A.U., et al., 2018. Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity. European journal of pharmaceutics and biopharmaceutics, 133, 331–338. doi: 10.1016/j.ejpb.2018.11.001.
  • Šegota, S., et al., 2015. Ligand-dependent nanoparticle clustering within lipid membranes induced by surrounding medium. The journal of physical chemistry. B, 119 (16), 5208–5219. doi: 10.1021/acs.jpcb.5b00898.
  • Shrestha, S., Wang, B., and Dutta, P., 2020. Nanoparticle processing: Understanding and controlling aggregation. Advances in colloid and interface science, 279, 102162. doi: 10.1016/j.cis.2020.102162.
  • Thomson, N.H., et al., 2000. Atomic force microscopy of cationic liposomes. Langmuir, 16 (11), 4813–4818. doi: 10.1021/la991256p.
  • Wang, A., Chan Miller, C., and Szostak, J.W., 2019. Core-shell modeling of light scattering by vesicles: effect of size, contents, and lamellarity. Biophysical journal, 116 (4), 659–669. doi: 10.1016/j.bpj.2019.01.006.
  • Xing, S., et al., 2018. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. Nanotechnology, 29 (40), 405101. doi: 10.1088/1361-6528/aad358.
  • Yang, Z., et al., 2020. Gold nanoparticle-coupled liposomes for enhanced plasmonic biosensing. Sensors and actuators reports, 2 (1), 100023. doi: 10.1016/j.snr.2020.100023.
  • Yingchoncharoen, P., Kalinowski, D.S., and Richardson, D.R., 2016. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacological reviews, 68 (3), 701–787. doi: 10.1124/pr.115.012070.
  • Zhang, W., 2014. Nanoparticle aggregation: principles and modeling. Advances in experimental medicine and biology, 811, 20–43.
  • Živanović, V., et al., 2018. SERS and cryo-EM directly reveal different liposome structures during interaction with gold nanoparticles. The journal of physical chemistry letters, 9 (23), 6767–6772. doi: 10.1021/acs.jpclett.8b03191.
  • Živanović, V., et al., 2021. Molecular structure and interactions of lipids in the outer membrane of living cells based on surface-enhanced Raman scattering and liposome models. Analytical chemistry, 93 (29), 10106–10113. doi: 10.1021/acs.analchem.1c00964.
  • Zylberberg, C. and Matosevic, S., 2016. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug delivery, 23 (9), 3319–3329. doi: 10.1080/10717544.2016.1177136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.