132
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Carboxymethyl chitosan and octadecylamine-coated liposome-containing WPTS: design, optimization, and evaluation

, , , , , , , , , & show all
Pages 124-134 | Received 10 Apr 2023, Accepted 04 Aug 2023, Published online: 18 Aug 2023

References

  • Agarwal, K., 2022. Liposome assisted drug delivery: an updated review. Indian journal of pharmaceutical sciences, 84 (4), 797–811. doi: 10.36468/pharmaceutical-sciences.975.
  • Ajeeshkumar, K.K., et al., 2021. Advancements in liposome technology: preparation techniques and applications in food, functional foods, and bioactive delivery: a review. Comprehensive reviews in food science and food safety, 20 (2), 1280–1306. doi: 10.1111/1541-4337.12725.
  • Anwar, M., Muhammad, F., and Akhtar, B., 2021. Biodegradable nanoparticles as drug delivery devices. Journal of drug delivery science and technology, 64, 102638. doi: 10.1016/j.jddst.2021.102638.
  • Bai, C.Q., et al., 2011. Carboxymethylchitosan-coated proliposomes containing coix seed oil: characterisation, stability and in vitro release evaluation. Food chemistry, 129 (4), 1695–1702. doi: 10.1016/j.foodchem.2011.06.033.
  • Bayford, R., et al., 2017. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review. Physiological measurement, 38 (8), R183–R203. doi: 10.1088/1361-6579/aa7182.
  • Chen, J., et al., 2021. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. Journal of liposome research, 31 (2), 130–144. doi: 10.1080/08982104.2020.1748646.
  • Chen, J.T., et al., 2019. Two types of core/shell fibers based on carboxymethyl chitosan and sodium carboxymethyl cellulose with self-assembled liposome for buccal delivery of carvedilol across TR146 cell culture and porcine buccal mucosa. International journal of biological macromolecules, 128, 700–709. doi: 10.1016/j.ijbiomac.2019.01.143.
  • Gabizon, A.A., Shmeeda, H., and Zalipsky, S., 2006. Pros and cons of the liposome platform in cancer drug targeting. Journal of liposome research, 16 (3), 175–183. doi: 10.1080/08982100600848769.
  • Gujarathi, N.A., Rane, B.R., and Patel, J.K., 2012. pH sensitive polyelectrolyte complex of O-carboxymethyl chitosan and poly(acrylic acid) cross-linked with calcium for sustained delivery of acid susceptible drugs. International journal of pharmaceutics, 436 (1–2), 418–425. doi: 10.1016/j.ijpharm.2012.07.016.
  • Hasan, M., et al., 2016. Chitosan-coated liposomes encapsulating curcumin: study of lipid-polysaccharide interactions and nanovesicle behavior. RSC advances, 6 (51), 45290–45304. doi: 10.1039/C6RA05574E.
  • Hasan, M., et al., 2020. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Marine drugs, 18 (4), 217. doi: 10.3390/md18040217.
  • Hashim, M.A., et al., 2022. Encapsulation of bioactive compounds extracted from date palm seeds (Phoenix dactylifera L.) and their use in functional food. Frontiers in nutrition, 9, 1051050. doi: 10.3389/fnut.2022.1051050.
  • Huang, A.W., et al., 2011. N-trimethyl chitosan-modified liposomes as carriers for oral delivery of salmon calcitonin. Drug delivery, 18 (8), 562–569. doi: 10.3109/10717544.2011.596585.
  • Huang, C., Li, C., and Muhemaitiac, P., et al., 2019. Impediment of selenite-induced cataract in rats by combinatorial drug laden liposomal preparation. Libyan journal of medicine, 14 (1), 1548252. doi: 10.1080/19932820.2018.1548252.
  • Huang, S.M., et al., 2017. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid. Ultrasonics sonochemistry, 36, 112–122. doi: 10.1016/j.ultsonch.2016.11.016.
  • Huang, Y., et al., 2014. Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity. Carbohydrate polymers, 104, 118–126. doi: 10.1016/j.carbpol.2014.01.022.
  • Jain, S., et al., 2012. Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Molecular pharmaceutics, 9 (9), 2626–2635. doi: 10.1021/mp300202c.
  • Jiao, Z.M., et al., 2017. Pep-1 peptide-functionalized liposome to enhance the anticancer efficacy of cilengitide in glioma treatment. Colloids and surfaces. B, biointerfaces, 158, 68–75. doi: 10.1016/j.colsurfb.2017.03.058.
  • Jin, Z.X., et al., 2021. Liposome-coated arsenic-manganese complex for magnetic resonance imaging-guided synergistic therapy against carcinoma. International journal of nanomedicine, 16, 3775–3788. doi: 10.2147/IJN.S313962.
  • Kohane, D.S., 2007. Microparticles and nanoparticles for drug delivery. Biotechnology and bioengineering, 96 (2), 203–209. doi: 10.1002/bit.21301.
  • Kumar, S., et al., 2020. A systematic study on chitosan-liposome based systems for biomedical applications. International journal of biological macromolecules, 160, 470–481. doi: 10.1016/j.ijbiomac.2020.05.192.
  • Li, P., et al., 2012. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. International journal of nanomedicine, 7, 925–939. doi: 10.2147/IJN.S26955.
  • Li, Z., et al., 2017. Development of liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole. Asian journal of pharmaceutical sciences, 12 (2), 157–164. doi: 10.1016/j.ajps.2016.05.006.
  • Liu, Y.J., et al., 2015. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food research international, 74, 97–105. doi: 10.1016/j.foodres.2015.04.024.
  • Liu, Z.G., et al., 2015. Development of liposomal Ganoderma lucidum polysaccharide: formulation optimization and evaluation of its immunological activity. Carbohydrate polymers, 117, 510–517. doi: 10.1016/j.carbpol.2014.09.093.
  • Lombardo, D., Kiselev, M.A., and Caccamo, M.T., 2019. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of nanomaterials, 2019, 1–26. doi: 10.1155/2019/3702518.
  • Miskeen, S., An, Y.S., and Kim, J.Y., 2021. Application of starch nanoparticles as host materials for encapsulation of curcumin: effect of citric acid modification. International journal of biological macromolecules, 183, 1–11. doi: 10.1016/j.ijbiomac.2021.04.133.
  • Murugesan, K., et al., 2020. Tuftsin-bearing liposomes co-encapsulated with doxorubicin and curcumin efficiently inhibit EAC tumor growth in mice. International journal of nanomedicine, 15, 10547–10559. doi: 10.2147/IJN.S276336.
  • Nadimi, A.E., et al., 2018. Nano-scale drug delivery systems for antiarrhythmic agents. European journal of medicinal chemistry, 157, 1153–1163. doi: 10.1016/j.ejmech.2018.08.080.
  • Peng, J.Q., et al., 2022. Carboxymethyl chitosan modified oxymatrine liposomes for the alleviation of emphysema in mice via pulmonary administration. Molecules, 27 (11), 3610. doi: 10.3390/molecules27113610.
  • Qiang, M.D., et al., 2020. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes. Molecules, 25 (3), 610. doi: 10.3390/molecules25030610.
  • Rasti, B., et al., 2014. Optimization on preparation condition of polyunsaturated fatty acids nanoliposome prepared by Mozafari method. Journal of liposome research, 24 (2), 99–105. doi: 10.3109/08982104.2013.839702.
  • Rizvi, S.A.A. and Saleh, A.M., 2018. Applications of nanoparticle systems in drug delivery technology. Saudi pharmaceutical journal, 26 (1), 64–70. doi: 10.1016/j.jsps.2017.10.012.
  • Sang, R., et al., 2021. Liposome technologies towards colorectal cancer therapeutics. Acta biomaterialia, 127, 24–40. doi: 10.1016/j.actbio.2021.03.055.
  • Shariatinia, Z., 2018. Carboxymethyl chitosan: properties and biomedical applications. International journal of biological macromolecules, 120 (Pt B), 1406–1419. doi: 10.1016/j.ijbiomac.2018.09.131.
  • Sriwidodo  , et al., 2022. Liposome–polymer complex for drug delivery system and vaccine stabilization. Heliyon, 8 (2), e08934. doi: 10.1016/j.heliyon.2022.e08934.
  • Sun, U.P., et al., 2006. A new approach to chemically modified carboxymethyl chitosan and study of its moisture-absorption and moisture-retention abilities. Journal of applied polymer science, 102 (2), 1303–1309. doi: 10.1002/app.23718.
  • Tian, M.P., et al., 2018. Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes. International journal of biological macromolecules, 120 (Pt A), 702–710. doi: 10.1016/j.ijbiomac.2018.08.146.
  • Wang, F.Q., et al., 2016. Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery. Colloids and surfaces. B, biointerfaces, 148, 147–156. doi: 10.1016/j.colsurfb.2016.08.042.
  • Wang, F.Z., et al., 2014. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design. Journal of liposome research, 24 (3), 171–181. doi: 10.3109/08982104.2014.891231.
  • Wang, L.C., et al., 2018. Hybrid mesoporous-microporous nanocarriers for overcoming multidrug resistance by sequential drug delivery. Molecular pharmaceutics, 15 (7), 2503–2512. doi: 10.1021/acs.molpharmaceut.7b01096.
  • Wang, W.X., Feng, S.S., and Zheng, C.H., 2016. A comparison between conventional liposome and drug–cyclodextrin complex in liposome system. International journal of pharmaceutics, 513 (1–2), 387–392. doi: 10.1016/j.ijpharm.2016.09.043.
  • Woodbury, D.J., et al., 2006. Reducing liposome size with ultrasound: bimodal size distributions. Journal of liposome research, 16 (1), 57–80. doi: 10.1080/08982100500528842.
  • Wu, Z.Y., et al., 2019. Optimization on conditions of podophyllotoxin-loaded liposomes using response surface methodology and its activity on PC3 cells. Journal of liposome research, 29 (2), 133–141. doi: 10.1080/08982104.2018.1502303.
  • Xiong, Y., et al., 2009. Development of nobiliside A loaded liposomal formulation using response surface methodology. International journal of pharmaceutics, 371 (1–2), 197–203. doi: 10.1016/j.ijpharm.2008.12.031.
  • Yamamoto, E., 2019. In vitro release method for liposome drug products. Yakugaku Zasshi, 139 (2), 249–254. doi: 10.1248/yakushi.18-00171-2.
  • Yao, Y., et al., 2015. pH-sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. International journal of nanomedicine, 10, 6185–6197. doi: 10.2147/IJN.S90524.
  • Yu, S.F., et al., 2017. Review of MEMS differential scanning calorimetry for biomolecular study. Frontiers of mechanical engineering, 12 (4), 526–538. doi: 10.1007/s11465-017-0451-0.
  • Zhang, C.J., et al., 2021. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet beta cells. Pharmacological research, 165, 105416. doi: 10.1016/j.phrs.2020.105416.
  • Zheng, Y.W., et al., 2021. Membrane protein-chimeric liposome-mediated delivery of triptolide for targeted hepatocellular carcinoma therapy. Drug delivery, 28 (1), 2033–2043. doi: 10.1080/10717544.2021.1983072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.