1,728
Views
1
CrossRef citations to date
0
Altmetric
Nutrition/feeding

Methane inhibition by Asparagopsis taxiformis with rumen fluid collected from ventral and central location – a pilot study

, , , , , , , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 25-32 | Received 16 Aug 2022, Accepted 16 Nov 2022, Published online: 16 Dec 2022

References

  • Alvarez Hess, P. S., Eckard, R. J., Jacobs, J. L., Hannah, M. C. & Moate, P. J. (2019). Comparison of five methods for the estimation of methane production from vented in vitro systems. Journal of the Science of Food and Agriculture, 99, 109–116.
  • Andries, J. I., Buysse, F. X., Debrabander, D. L. & Cottyn, B. G. (1987). Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influences on performances — a review. Animal Feed Science and Technology, 18, 169–180.
  • AOAC. (1995). Official Methods of Analysis of AOAC International (Arlington: Association of Official Analytical Chemists).
  • Bryant, A. M. (1964). Variations in the pH and volatile fatty acid concentration within the bovine reticulo-rumen. New Zealand Journal of Agricultural Research, 7, 694–706.
  • Bryant, M. P. & Robinson, H. M. (1968). Effects of diet, time after feeding, and position sampled on numbers of viable bacteria in the bovine rumen. Journal of Dairy Science, 51, 1950–1955.
  • Cattani, M., Maccarana, L., Rossi, G., Tagliapietra, F., Schiavon, S. & Bailoni, L. (2016). Dose-response and inclusion effects of pure natural extracts and synthetic compounds on in vitro methane production. Animal Feed Science and Technology, 218, 100–109.
  • Ellis, J. L., Bannink, A., Hindrichsen, I. K., Kinley, R. D., Pellikaan, W. F., Milora, N. & Dijkstra, J. (2016). The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Animal Feed Science and Technology, 211, 61–74.
  • Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agriculture Handbook 379. Washington, DC: USDA - ARS.
  • Kidane, A., Øverland, M., Mydland, L. T. & Prestløkken, E. (2018). Interaction between feed use efficiency and level of dietary crude protein on enteric methane emission and apparent nitrogen use efficiency with Norwegian Red dairy cows1. Journal of Animal Science, 96, 3967–3982.
  • Kinley, R. D., Vucko, M. J., Machado, L. & Tomkins, N. W. (2016). In vitro evaluation of the antimethanogenic potency and effects on fermentation of individual and combinations of marine macroalgae. American Journal of Plant Sciences, 07, 2038–2054.
  • Machado, L., Magnusson, M., Paul, N. A., de Nys, R. & Tomkins, N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One, 9, e85289.
  • Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R. & Tomkins, N. (2016a). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28, 1443–1452.
  • Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R. & Tomkins, N. (2016b). Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. Journal of Applied Phycology, 28, 3117–3126.
  • Martin, C. & Michalet-Doreau, B. (1995). Variations in mass and enzyme activity of rumen microorganisms: effect of barley and buffer supplements. Journal of the Science of Food and Agriculture, 67, 407–413.
  • Meale, S. J., Chaves, A. V., Baah, J. & McAllister, T. A. (2012). Methane production of different forages in in vitro ruminal fermentation. Asian-Australasian Journal of Animal Sciences, 25, 86–91.
  • Mitsumori, M., Shinkai, T., Takenaka, A., Enishi, O., Higuchi, K., Kobayashi, Y., Nonaka, I., Asanuma, N., Denman, S. E. & McSweeney, C. S. (2012). Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British Journal of Nutrition, 108, 482–491.
  • Morgavi, D. P., Forano, E., Martin, C. & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4, 1024–1036.
  • NorFor—The Nordic Feed Evaluation System. (2011). EAAP Publication No. 130; Volden, H., Ed. (Wageningen: Academic Publishers).
  • Roque, B. M., Brooke, C. G., Ladau, J., Polley, T., Marsh, L., Najafi, J., Pandey, N., Singh, P., Kinley, L. & Salwen, R. (2019). Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome, 1, 3.
  • Shen, J. S., Chai, Z., Song, L. J., Liu, J. X. & Wu, Y. M. (2012). Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. Journal of Dairy Science, 95, 5978–5984.
  • Sjaastad, Ø. V., Sand, O. & Hove, K. (2016). Physiology of Domestic Animals (3rd ed). Oslo: Scandinavian Veterinary Press).
  • Song, J., Choi, H., Jeong, J. Y., Lee, S., Lee, H. J., Baek, Y., Ji, S. Y. & Kim, M. (2018). Effects of sampling techniques and sites on rumen microbiome and fermentation parameters in Hanwoo steers. Journal of Microbiology and Biotechnology, 28, 1700–1705.
  • Tafaj, M., Junck, B., Maulbetsch, A., Steingass, H., Piepho, H. P. & Drochner, W. (2004). Digesta characteristics of dorsal, middle and ventral rumen of cows fed with different hay qualities and concentrate levels. Archives of Animal Nutrition, 58, 325–342.
  • Terranova, M., Eggerschwiler, L., Ortmann, S., Clauss, M., Kreuzer, M. & Schwarm, A. (2021). Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Animal Feed Science and Technology, 276, 114790.
  • Thiex, N. J., Manson, H., Anderson, S., Persson, J. Å. & Collaborators: Anderson, S., Bogren, E., Bolek, G., Budde, D., Ellis, C., Eriksson, S., Field, G., Frankenius, E., Henderson, C., Henry, C., Kapphahn, M., Lundberg, L., Manson, H.,Moller, J., Russell, M., Sefert-Schwind, J. & Spann, M. (2002). Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC International, 85, 309–317.
  • Ungerfeld, E. M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology, 6, 37.
  • Vucko, M. J., Magnusson, M., Kinley, R. D., Villart, C. & de Nys, R. (2017). The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. Journal of Applied Phycology, 29, 1577–1586.
  • Wang, Y., Xu, Z., Bach, S. J. & McAllister, T. A. (2008). Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology, 145, 375–395.
  • Wood, J. M., Kennedy, F. S. & Wolfe, R. S. (1968). Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 7, 1707–1713.
  • Yáñez-Ruiz, D. R., Bannink, A., Dijkstra, J., Kebreab, E., Morgavi, D. P., ÓKiely, P., Reynolds, C. K., Schwarm, A., Shingfield, K. J., Yu, Z. & Hristov, A. N. (2016). Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology, 216, 1–18.
  • Zeitz, J. O., Ineichen, S., Soliva, C. R., Leiber, F., Tschuor, A., Braun, U., Kreuzer, M. & Clauss, M. (2016). Variability in microbial population and fermentation traits at various sites within the forestomach and along the digestive tract as assessed in goats fed either grass or browse. Small Ruminant Research, 136, 7–17.