68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of biosensing properties in magnetron sputtered metallized UV-curable polymer microneedle electrodes

, , , &
Pages 1008-1030 | Received 20 Sep 2023, Accepted 08 Jan 2024, Published online: 22 Feb 2024

References

  • Jia B, Xia T, Wang X, et al. Morphology design of polymer microneedle arrays: key factors from the application perspective. J Drug Delivery Sci Technol. 2023;88:104883. doi: 10.1016/j.jddst.2023.104883.
  • Zhang X, Chen G, Bian F, et al. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv Mater. 2019;31(37):e1902825. doi: 10.1002/adma.201902825.
  • Yang J, Yang J, Gong X, et al. Recent progress in microneedles-mediated diagnosis, therapy, and theranostic systems. Adv Healthc Mater. 2022;11(10):2270050. doi: 10.1002/adhm.202270050.
  • Kai H, Kumatani A. A porous microneedle electrochemical glucose sensor fabricated on a scaffold of a polymer monolith. J Phys Energy. 2021;3(2):024006. doi: 10.1088/2515-7655/abe4a1.
  • Chien MN, Fan SH, Huang CH, et al. Continuous lactate monitoring system based on percutaneous microneedle array. Sensors (Basel). 2022;22(4):1468. doi: 10.3390/s22041468.
  • Li Z, Kadian S, Mishra RK, et al. Electrochemical detection of cholesterol in human biofluid using microneedle sensor. J Mater Chem B. 2023;11(26):6075–6081. doi: 10.1039/d2tb02142k.
  • Zheng M, Zhang Y, Hu T, et al. A skin patch integrating swellable microneedles and electrochemical test strips for glucose and alcohol measurement in skin interstitial fluid. Bioeng Transl Med. 2023;8(5):e10413. doi: 10.1002/btm2.10413.
  • Mishra RK, Goud KY, Li Z, et al. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J Am Chem Soc. 2020;142(13):5991–5995. doi: 10.1021/jacs.0c01883.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng: R: Rep. 2016;104:1–32. doi: 10.1016/j.mser.2016.03.001.
  • Zhang BL, Zhang XP, Chen BZ, et al. Microneedle-assisted technology for minimally invasive medical sensing. Microchem J. 2021;162:105830. doi: 10.1016/j.microc.2020.105830.
  • Babity S, Laszlo E, Brambilla D. Polymer-based microneedles for decentralized diagnostics and monitoring: concepts, potentials, and challenges. Chem Mater. 2021;33(18):7148–7159. doi: 10.1021/acs.chemmater.1c01866.
  • Koyani RD. Synthetic polymers for microneedle synthesis: from then to now. J Drug Delivery Sci Technol. 2020;60:102071. doi: 10.1016/j.jddst.2020.102071.
  • Economidou SN, Pissinato Pere CP, Okereke M, et al. Optimisation of design and manufacturing parameters of 3D printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines (Basel). 2021;12(2):117. doi: 10.3390/mi12020117.
  • Liu Y, Yu Q, Luo X, et al. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst Nanoeng. 2021;7(1):75. doi: 10.1038/s41378-021-00302-w.
  • Li J-W, Lee JC-M, Chuang K-C, et al. Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Prog Org Coat. 2023;176:107378. doi: 10.1016/j.porgcoat.2022.107378.
  • Sadeqi A, Kiaee G, Zeng W, et al. Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery. Sci Rep. 2022;12(1):1853. doi: 10.1038/s41598-022-05912-6.
  • Tabriz AG, Viegas B, Okereke M, et al. Evaluation of 3D printability and biocompatibility of microfluidic resin for fabrication of solid microneedles. Micromachines (Basel). 2022;13(9):1368. doi: 10.3390/mi13091368.
  • Freeman DME, Cass AEG. A perspective on microneedle sensor arrays for continuous monitoring of the body’s chemistry. Appl. Phys. Lett. 2022;121(7):070502. doi: 10.1063/5.0097040.
  • Rivas L, Dulay S, Miserere S, et al. Micro-needle implantable electrochemical oxygen sensor: ex-vivo and in-vivo studies. Biosens Bioelectron. 2020;153:112028. doi: 10.1016/j.bios.2020.112028.
  • Baek JY, Kang KM, Kim HJ, et al. Manufacturing process of polymeric microneedle sensors for mass production. Micromachines (Basel). 2021;12(11):1364. doi: 10.3390/mi12111364.
  • Zhang BL, Yang Y, Zhao ZQ, et al. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim Acta. 2020;358:136917. doi: 10.1016/j.electacta.2020.136917.
  • Tortolini C, Cass AEG, Pofi R, et al. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection. Mikrochim Acta. 2022;189(5):180. doi: 10.1007/s00604-022-05260-2.
  • Liu J, He L, Xu Z, et al. Defect generation mechanism in magnetron sputtered metal films on PMMA substrates. J. Mater. Sci.: Mater. Electron. 2019;30(16):14847–14854. doi: 10.1007/s10854-019-01855-3.
  • Dervisevic M, Dervisevic E, Esser L, et al. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens Bioelectron. 2023;222:114955. doi: 10.1016/j.bios.2022.114955.
  • Gowers SAN, Freeman DME, Rawson TM, et al. Development of a minimally invasive microneedle-based sensor for continuous monitoring of beta-Lactam antibiotic concentrations in vivo. ACS Sens. 2019;4(4):1072–1080. doi: 10.1021/acssensors.9b00288.
  • Wakeel A, Xu M. Chromium morpho-phytotoxicity. Plants (Basel). 2020;9(5):564. doi: 10.3390/plants9050564.
  • Hossini H, Shafie B, Niri AD, et al. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 2022;29(47):70686–70705. doi: 10.1007/s11356-022-22705-6.
  • Yang M, Gao K. Texture evolution of obliquely deposited Au thin films. Vacuum. 2023;218:112600. doi: 10.1016/j.vacuum.2023.112600.
  • Lei Y, Jiang J, Wang Y, et al. Structure evolution and stress transition in diamond-like carbon films by glancing angle deposition. Appl Surf Sci. 2019;479:12–19. doi: 10.1016/j.apsusc.2019.02.063.
  • Liu HY, Deng QY, Ma DL, et al. The uniformity of TiN films deposited on the inner surfaces of a hemispherical workpiece by high-power pulsed magnetron sputtering. Int J Mod Phys B. 2019;33(28):1950329. doi: 10.1142/S0217979219503296.
  • Barranco A, Borras A, Gonzalez-Elipe AR, et al. Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog Mater Sci. 2016;76:59–153. doi: 10.1016/j.pmatsci.2015.06.003.
  • Muñoz-Piña S, Alcaide AM, Limones-Ahijón B, et al. Thin film nanostructuring at oblique angles by substrate patterning. Surf Coat Technol. 2022;436:128293. doi: 10.1016/j.surfcoat.2022.128293.
  • Liu D, Benstetter G, Lodermeier E, et al. Influence of the incident angle of energetic carbon ions on the properties of tetrahedral amorphous carbon (ta-C) films. J. Vac. Sci. Technol. A. 2003;21(5):1665–1670. doi: 10.1116/1.1597888.
  • Jeyachandran YL, Mielczarski E, Rai B, et al. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir. 2009;25(19):11614–11620. doi: 10.1021/la901453a.
  • Kowalczyk A, Yu C, Nowicka AM. Ceruloplasmin in flatland: the relationship between enzyme catalytic activity and surface hydrophilicity. RSC Adv. 2022;12(39):25388–25396. doi: 10.1039/D2RA04159F.
  • Li Y, Ogorzalek TL, Wei S, et al. Effect of immobilization site on the orientation and activity of surface-tethered enzymes. Phys Chem Chem Phys. 2018;20(2):1021–1029. doi: 10.1039/C7CP06063G.
  • Jasrotia P, Priya B, Kumar R, et al. A correlation between fractal growth, water contact angle, and SERS intensity of R6G on ion beam nanostructured ultra-thin gold (Au) films. Front Phys. 2023;11:1125004. doi: 10.3389/fphy.2023.1125004.
  • Gardner JR, Woods R. The hydrophilic nature of gold and platinum. J Electroanal Chem Interfacial Electrochem. 1977;81(2):285–290. doi: 10.1016/S0022-0728(77)80024-7.
  • Barriga J, Fernández-Diaz B, Juarros A, et al. Microtribological analysis of gold and copper contacts. Tribol Int. 2007;40(10–12):1526–1530. doi: 10.1016/j.triboint.2007.01.009.
  • Heier M, Merz R, Becker S, et al. Experimental study of the influence of the adsorbate layer composition on the wetting of different substrates with water. Adsorpt Sci Technol. 2021;2021:1–11. doi: 10.1155/2021/6663989.
  • Correira JM, Madeksho DE, Webb LJ. Acetylcholinesterase adsorption on modified gold: effect of surface chemistry on enzyme binding and activity. Langmuir. 2023;39(29):9973–9979. doi: 10.1021/acs.langmuir.3c00648.
  • Kilic NM, Singh S, Keles G, et al. Novel approaches to enzyme-based electrochemical nanobiosensors. Biosensors (Basel). 2023;13(6):622. doi: 10.3390/bios13060622.
  • Schroeder MM, Wang Q, Badieyan S, et al. Effect of surface crowding and surface hydrophilicity on the activity, stability and molecular orientation of a covalently tethered enzyme. Langmuir. 2017;33(28):7152–7159. doi: 10.1021/acs.langmuir.7b00646.
  • Li H, Lu X, Lu Q, et al. Hierarchical porous and hydrophilic metal–organic frameworks with enhanced enzyme activity. Chem Commun (Camb). 2020;56(34):4724–4727. doi: 10.1039/D0CC00748J.
  • Liang W, Xu H, Carraro F, et al. Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J Am Chem Soc. 2019;141(6):2348–2355. doi: 10.1021/jacs.8b10302.
  • Ge D, Li M, Wei D, et al. Enhanced activity of enzyme encapsulated in hydrophilic metal-organic framework for biosensing. Chem Eng J. 2023;469:144067. doi: 10.1016/j.cej.2023.144067.
  • Liu Q, Chapman J, Huang A, et al. User-tailored metal–organic frameworks as supports for carbonic anhydrase. ACS Appl Mater Interfaces. 2018;10(48):41326–41337. doi: 10.1021/acsami.8b14125.
  • Zhang H, Luo J, Li S, et al. Biocatalytic membrane based on polydopamine coating: a platform for studying immobilization mechanisms. Langmuir. 2018;34(8):2585–2594. doi: 10.1021/acs.langmuir.7b02860.
  • Davis SP, Landis BJ, Adams ZH, et al. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155–1163. doi: 10.1016/j.jbiomech.2003.12.010.
  • Dervisevic M, Voelcker NH. Microneedles with recessed microcavities for electrochemical sensing in dermal interstitial fluid. ACS Mater Lett. 2023;5(7):1851–1858. doi: 10.1021/acsmaterialslett.3c00441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.