167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advances in injectable hydrogels for radiation-induced heart disease

, , , , , , , & show all
Pages 1031-1063 | Received 09 Oct 2023, Accepted 11 Jan 2024, Published online: 10 Feb 2024

References

  • Slezak J, Kura B, Babal P, et al. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol. 2017;95(10):1190–1203. doi: 10.1139/cjpp-2017-0121.
  • Chung SY, Oh J, Chang JS, et al. Risk of cardiac disease in patients with breast cancer: impact of Patient-Specific factors and individual heart dose from three-dimensional radiation therapy planning. Int J Radiat Oncol Biol Phys. 2021;110(2):473–481. doi: 10.1016/j.ijrobp.2020.12.053.
  • Madan R, Benson R, Sharma DN, et al. Radiation induced heart disease: pathogenesis, management and review literature. J Egypt Natl Canc Inst. 2015;27(4):187–193. doi: 10.1016/j.jnci.2015.07.005.
  • Chargari C, Riet F, Mazevet M, et al. Complications of thoracic radiotherapy. Presse Med. 2013;42(9 Pt 2):e342–e351. doi: 10.1016/j.lpm.2013.06.012.
  • Yan R, Song J, Wu Z, et al. Detection of myocardial metabolic abnormalities by 18F-FDG PET/CT and corresponding pathological changes in beagles with local heart irradiation. Korean J Radiol. 2015;16(4):919–928. doi: 10.3348/kjr.2015.16.4.919.
  • Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–998. doi: 10.1056/NEJMoa1209825.
  • Wang H, Wei J, Zheng Q, et al. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019;15(10):2128–2138. doi: 10.7150/ijbs.35460.
  • McWilliam A, Kennedy J, Hodgson C, et al. Radiation dose to heart base linked with poorer survival in lung cancer patients. Eur J Cancer. 2017;85:106–113. doi: 10.1016/j.ejca.2017.07.053.
  • McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100(2):167–175. doi: 10.1016/j.radonc.2011.06.016.
  • Baker JE, Fish BL, Su J, et al. 10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model. Int J Radiat Biol. 2009;85(12):1089–1100. doi: 10.3109/09553000903264473.
  • Lenarczyk M, Lam V, Jensen E, et al. Cardiac injury after 10 Gy total body irradiation: indirect role of effects on abdominal organs. Radiat Res. 2013;180(3):247–258. doi: 10.1667/RR3292.1.
  • Adams M, Lipshultz S, Schwartz C, et al. Radiation-associated cardiovascular disease: manifestations and management. Semin Radiat Oncol. 2003;13(3):346–356. doi: 10.1016/S1053-4296(03)00026-2.
  • Lenarczyk M, Su J, Haworth ST, et al. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharmacol Res Perspect. 2015; [cited 2023 Sep 13]3(3):e00145. [Internet]. Available from: https://onlinelibrary.wiley.com/doi/10.1002/prp2.145. doi: 10.1002/prp2.145.
  • Dreyfuss AD, Goia D, Shoniyozov K, et al. A novel mouse model of radiation-induced cardiac injury reveals biological and radiological biomarkers of cardiac dysfunction with potential clinical relevance. Clin Cancer Res. 2021;27(8):2266–2276. doi: 10.1158/1078-0432.CCR-20-3882.
  • Wei Y, Sun Y, Liu J, et al. Early detection of radiation-induced myocardial damage by [18F]AlF-NOTA-FAPI-04 PET/CT imaging. Eur J Nucl Med Mol Imaging. 2023;50(2):453–464. doi: 10.1007/s00259-022-05962-y.
  • Spetz J, Moslehi J, Sarosiek K. Radiation-Induced cardiovascular toxicity: mechanisms, prevention, and treatment. Curr Treat Options Cardiovasc Med. 2018;20(4):31. doi: 10.1007/s11936-018-0627-x.
  • Boerma M. Experimental radiation-induced heart disease: past, present, and future. Radiat Res. 2012;178(1):1–6. doi: 10.1667/rr2933.1.
  • Boerma M, Wang J, Wondergem J, et al. Influence of mast cells on structural and functional manifestations of radiation-induced heart disease. Cancer Res. 2005;65:3100–3107. doi: https://doi.org/10.1158/0008-5472.CAN-04-4333
  • Boerma M, Roberto KA, Hauer-Jensen M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and Alpha-Tocopherol. Int J Radiat Oncol Biol Phys. 2008;72(1):170–177. doi: 10.1016/j.ijrobp.2008.04.042.
  • Gustavsson A, Osterman B, Cavallin-Ståhl E. A systematic overview of radiation therapy effects in hodgkin’s lymphoma. Acta Oncol. 2003;42(5-6):589–604. doi: 10.1080/02841860310013346.
  • Feigenbaum H, Mastouri R, Sawada S. A practical approach to using strain echocardiography to evaluate the left ventricle. Circ J. 2012;76(7):1550–1555. doi: 10.1253/circj.cj-12-0665.
  • Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A. 64(1)2003:70–79. doi: 10.1002/jbm.a.10319
  • Waters R, Alam P, Pacelli S, et al. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2018;69:95–106. doi: 10.1016/j.actbio.2017.12.025.
  • Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–8062. doi: 10.1021/nn5020787.
  • Wang W, Tan B, Chen J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials. 2018;160:69–81. doi: 10.1016/j.biomaterials.2018.01.021.
  • Kamimura W, Koyama H, Miyata T, et al. Sugar-based crosslinker forms a stable atelocollagen hydrogel that is a favorable microenvironment for 3D cell culture: SUGAR-BASED CROSSLINKER FORMS a STABLE ATELOCOLLAGEN HYDROGEL. J Biomed Mater Res A. 2014;102(12):4309–4316. doi: 10.1002/jbm.a.35106.
  • Piantanida E, Alonci G, Bertucci A, et al. Design of nanocomposite injectable hydrogels for minimally invasive surgery. Acc Chem Res. 2019;52(8):2101–2112. doi: 10.1021/acs.accounts.9b00114.
  • Flégeau K, Pace R, Gautier H, et al. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interface Sci. 2017;247:589–609. doi: 10.1016/j.cis.2017.07.012.
  • Fujimoto KL, Ma Z, Nelson DM, et al. Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials. 2009;30(26):4357–4368. doi: 10.1016/j.biomaterials.2009.04.055.
  • Azzam EI, Jay-Gerin J-P, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1-2):48–60. doi: 10.1016/j.canlet.2011.12.012.
  • Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–115. doi: 10.1038/cr.2010.178.
  • Ping Z, Peng Y, Lang H, et al. Oxidative stress in radiation-induced cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143–3579115. doi: 10.1155/2020/3579143.
  • Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51. doi: 10.3390/cells10010051.
  • Barjaktarovic Z, Shyla A, Azimzadeh O, et al. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40weeks after local heart exposure. Radiother Oncol. 2013;106(3):404–410. doi: 10.1016/j.radonc.2013.01.017.
  • Livingston K, Schlaak RA, Puckett LL, et al. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front Cardiovasc Med. 2020;7:20. doi: 10.3389/fcvm.2020.00020.
  • Luczak ED, Anderson ME. CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol. 2014;73:112–116. doi: 10.1016/j.yjmcc.2014.02.004.
  • Donnellan E, Phelan D, McCarthy CP, et al. Radiation-induced heart disease: a practical guide to diagnosis and management. Cleve Clin J Med. 2016;83(12):914–922. doi: 10.3949/ccjm.83a.15104.
  • Hawkins PG, Sun Y, Dess RT, et al. Circulating microRNAs as biomarkers of radiation-induced cardiac toxicity in non-small-cell lung cancer. J Cancer Res Clin Oncol. 2019;145(6):1635–1643. doi: 10.1007/s00432-019-02903-5.
  • Singh V, Mendirichaga R, Savani GT, et al. Comparison of utilization trends, indications, and complications of endomyocardial biopsy in native versus donor hearts (from the nationwide inpatient sample 2002 to 2014). Am J Cardiol. 2018;121(3):356–363. doi: 10.1016/j.amjcard.2017.10.021.
  • Han Y, Yang W. Retraction: development of functional hydrogels for heart failure. J Mater Chem B. 2021;9(15):3412–3412. doi: 10.1039/d1tb90051j.
  • Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook. Adv Drug Deliv Rev. 2016;96:54–76. doi: 10.1016/j.addr.2015.04.021.
  • Han MA, Jeon JH, Shin JY, et al. Intramyocardial delivery of human cardiac stem cell spheroids with enhanced cell engraftment ability and cardiomyogenic potential for myocardial infarct repair. J Control Release. 2021;336:499–509. doi: 10.1016/j.jconrel.2021.06.040.
  • Stüdemann T, Rössinger J, Manthey C, et al. Contractile force of transplanted cardiomyocytes actively supports heart function after injury. Circulation. 2022;146(15):1159–1169. doi: 10.1161/CIRCULATIONAHA.122.060124.
  • Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. 2014;13(3 Pt B):532–541. doi: 10.1016/j.scr.2014.09.003.
  • Bolli R, Ghafghazi S. Cell therapy needs rigorous translational studies in large animal models ∗. J Am Coll Cardiol. 2015;66(18):2000–2004. doi: 10.1016/j.jacc.2015.09.002.
  • Bolli R, Ghafghazi S. Cell therapy for cardiac repair: what is needed to move forward? Nat Rev Cardiol. 2017;14(5):257–258. doi: 10.1038/nrcardio.2017.38.
  • Wysoczynski M, Bolli R. A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. Eur Heart J. 2020;41(25):2397–2404. doi: 10.1093/eurheartj/ehz787.
  • Yeghiazarians Y, Zhang Y, Prasad M, et al. Injection of bone marrow cell extract into infarcted hearts results in functional improvement comparable to intact cell therapy. Mol Ther. 2009;17(7):1250–1256. doi: 10.1038/mt.2009.85.
  • Mabotuwana NS, Rech L, Lim J, et al. Paracrine factors released by stem cells of mesenchymal origin and their effects in cardiovascular disease: a systematic review of pre-clinical studies. Stem Cell Rev Rep. 2022;18(8):2606–2628. doi: 10.1007/s12015-022-10429-6.
  • Timmers L, Lim SK, Hoefer IE, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 2011;6(3):206–214. doi: 10.1016/j.scr.2011.01.001.
  • Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103(4):530–541. doi: 10.1093/cvr/cvu167.
  • Li S, Lin Z, Jiang X, et al. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin. 2018;39(4):542–551. doi: 10.1038/aps.2017.178.
  • Fang J, Zhang Y, Chen D, et al. Exosomes and exosomal cargos: a promising world for ventricular remodeling following myocardial infarction. Int J Nanomedicine. 2022;Volume 17:4699–4719. doi: 10.2147/IJN.S377479.
  • Mao L, Li Y-D, Chen R-L, et al. Heart-targeting exosomes from human cardiosphere-derived cells improve the therapeutic effect on cardiac hypertrophy. J Nanobiotechnology. 2022;20(1):435. doi: 10.1186/s12951-022-01630-3.
  • Dehkordi NR, Dehkordi NR, Farjoo MH. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur J Pharmacol. 2022;920:174839. doi: 10.1016/j.ejphar.2022.174839.
  • Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114(2):333–344. doi: 10.1161/CIRCRESAHA.114.300639.
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–1481. doi: 10.1039/b713009k.
  • Singelyn JM, DeQuach JA, Seif-Naraghi SB, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30(29):5409–5416. doi: 10.1016/j.biomaterials.2009.06.045.
  • Sepantafar M, Maheronnaghsh R, Mohammadi H, et al. Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv. 2016;34(4):362–379. doi: 10.1016/j.biotechadv.2016.03.003.
  • Camci-Unal G, Annabi N, Dokmeci MR, et al. Hydrogels for cardiac tissue engineering. NPG Asia Mater. 2014;6(5):e99–e99. doi: 10.1038/am.2014.19.
  • Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: State of the art. Circ Res. 2014;114(2):354–367. doi: 10.1161/CIRCRESAHA.114.300522.
  • Ravichandran R, Venugopal JR, Sundarrajan S, et al. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology. 2012;23(38):385102. doi: 10.1088/0957-4484/23/38/385102.
  • Babensee JE, Anderson JM, McIntire LV, et al. Host response to tissue engineered devices. Adv Drug Deliv Rev. 1998;33(1-2):111–139. doi: 10.1016/s0169-409x(98)00023-4.
  • Elbert DL, Hubbell JA. Conjugate addition reactions combined with free-Radical cross-linking for the design of materials for tissue engineering. Biomacromolecules. 2001;2(2):430–441. doi: 10.1021/bm0056299.
  • Dib N, Khawaja H, Varner S, et al. Cell therapy for cardiovascular disease: a comparison of methods of delivery. J Cardiovasc Transl Res. 2011;4(2):177–181. doi: 10.1007/s12265-010-9253-z.
  • Didry N, Dubreuil L, Trotin F, et al. Antimicrobial activity of aerial parts of drosera peltata smith on oral bacteria. J Ethnopharmacol. 1998;60(1):91–96. doi: 10.1016/s0378-8741(97)00129-3.
  • Traverse JH, Henry TD, Dib N, et al. First-in-Man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci. 2019;4(6):659–669. doi: 10.1016/j.jacbts.2019.07.012.
  • Pina S, Ribeiro VP, Marques CF, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12(11):1824. doi: 10.3390/ma12111824.
  • Marci L, Meloni MC, Maccioni AM, et al. Formulation and characterization studies of trimethyl chitosan/sodium alginate nanoparticles for targeted drug delivery. ChemistrySelect. 2016;1(4):669–674. [Mismatch doi: 10.1002/slct.201600145.
  • Rassu G, Salis A, Porcu EP, et al. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases. Carbohydr Polym. 2016;136:1338–1347. doi: 10.1016/j.carbpol.2015.10.048.
  • Xu N, Xu J, Zheng X, et al. Preparation of injectable composite hydrogels by blending poloxamers with calcium carbonate‐crosslinked sodium alginate. ChemistryOpen. 2020;9(4):451–458. doi: 10.1002/open.202000040.
  • Hao T, Li J, Yao F, et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano. 2017;11(6):5474–5488. doi: 10.1021/acsnano.7b00221.
  • Zhou J, Liu W, Zhao X, et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Adv Sci. 2021;8:2100505.
  • Jahnke C, Hindricks G, Sommer P, et al. Cardiovascular magnetic resonance imaging for the detection and follow-up of isolated partial anomalous pulmonary venous connection. Eur Heart J. 2015;36(34):2337–2337. doi: 10.1093/eurheartj/ehv196.
  • Shu Y, Hao T, Yao F, et al. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces. 2015;7(12):6505–6517. doi: 10.1021/acsami.5b01234.
  • Liu Z, Wang H, Wang Y, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials. 2012;33(11):3093–3106. doi: 10.1016/j.biomaterials.2011.12.044.
  • Wang H, Zhang X, Li Y, et al. Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant. 2010;29(8):881–887. doi: 10.1016/j.healun.2010.03.016.
  • Ke X, Li M, Wang X, et al. An injectable chitosan/dextran/β -glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydr Polym. 2020;229:115516. doi: 10.1016/j.carbpol.2019.115516.
  • Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol. 2022;117(1):1. doi: 10.1007/s00395-022-00909-8.
  • Chen G, Li J, Song M, et al. A mixed component supramolecular hydrogel to improve mice cardiac function and alleviate ventricular remodeling after acute myocardial infarction. Adv Funct Mater. 2017;27:1701798.
  • Wu T, Cui C, Huang Y, et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction. ACS Appl Mater Interfaces. 2020;12(2):2039–2048. doi: 10.1021/acsami.9b17907.
  • Cui Z, Ni NC, Wu J, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8(10):2752–2764. doi: 10.7150/thno.22599.
  • Saldin LT, Cramer MC, Velankar SS, et al. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 2017;49:1–15. doi: 10.1016/j.actbio.2016.11.068.
  • Efraim Y, Schoen B, Zahran S, et al. 3D structure and processing methods direct the biological attributes of ECM-Based cardiac scaffolds. Sci Rep. 2019;9(1):5578. doi: 10.1038/s41598-019-41831-9.
  • Mann DL. Mechanisms and models in heart failure: a combinatorial approach. Circulation. 1999;100(9):999–1008. doi: 10.1161/01.cir.100.9.999.
  • Wang X, Shi H, Huang S, et al. Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction. Biomaterials. 2023;302:122364. doi: 10.1016/j.biomaterials.2023.122364.
  • Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–185. doi: 10.1016/j.yjmcc.2015.11.005.
  • Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20(2):109–116. doi: 10.1016/j.smim.2007.11.003.
  • McLaughlin S, McNeill B, Podrebarac J, et al. Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nat Commun. 2019;10(1):4866. doi: 10.1038/s41467-019-12748-8.
  • McLaughlin S, Sedlakova V, Zhang Q, et al. Recombinant human collagen hydrogel rapidly reduces methylglyoxal adducts within cardiomyocytes and improves borderzone contractility after myocardial infarction in mice. Adv Funct Mater. 2022;32:2204076.
  • Cimenci CE, Blackburn NJR, Sedlakova V, et al. Combined methylglyoxal scavenger and collagen hydrogel therapy prevents adverse remodeling and improves cardiac function post‐myocardial infarction. Adv Funct Mater. 2022;32:2108630.
  • Jacques E, Hosoyama K, Biniam B, et al. Collagen-Based microcapsules as therapeutic materials for stem cell therapies in infarcted myocardium. ACS Biomater Sci Eng. 2020;6(8):4614–4622. doi: 10.1021/acsbiomaterials.0c00245.
  • Pupkaite J, Sedlakova V, Eren Cimenci C, et al. Delivering more of an injectable human recombinant collagen III hydrogel does not improve its therapeutic efficacy for treating myocardial infarction. ACS Biomater Sci Eng. 2020;6(7):4256–4265. doi: 10.1021/acsbiomaterials.0c00418.
  • Rault I, Frei V, Herbage D, et al. Evaluation of different chemical methods for cros-linking collagen gel, films and sponges. J Mater Sci: mater Med. 1996;7(4):215–221. doi: 10.1007/BF00119733.
  • Chevallay B, Abdul-Malak N, Herbage D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J. Biomed. Mater. Res. 2000;49(4):448–459. doi: 10.1002/(SICI)1097-4636(20000315)49:4<448::AID-JBM3>3.0.CO;2-L.
  • Hu C, Liu W, Long L, et al. Regeneration of infarcted hearts by myocardial infarction-responsive injectable hydrogels with combined anti-apoptosis, anti-inflammatory and pro-angiogenesis properties. Biomaterials. 2022;290:121849. doi: 10.1016/j.biomaterials.2022.121849.
  • Aramwit P, Jaichawa N, Ratanavaraporn J, et al. A comparative study of type a and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Mat Express. 2015;5(3):241–248. doi: 10.1166/mex.2015.1233.
  • Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12(1):77–88. doi: 10.1163/156856201744461.
  • Zhao Z, Li G, Ruan H, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021;15(8):13041–13054. doi: 10.1021/acsnano.1c02147.
  • Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with 3D‐printed biodegradable high‐strength supramolecular polymer reinforced‐gelatin hydrogel scaffolds. Adv Sci. 2019;6:1900867.
  • Zhu S, Yu C, Liu N, et al. Injectable conductive gelatin methacrylate/oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment. Bioact Mater. 2022;13:119–134. doi: 10.1016/j.bioactmat.2021.11.011.
  • Spearman BS, Hodge AJ, Porter JL, et al. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater. 2015;28:109–120. doi: 10.1016/j.actbio.2015.09.025.
  • Zhang L, Li T, Yu Y, et al. An injectable conductive hydrogel restores electrical transmission at myocardial infarct site to preserve cardiac function and enhance repair. Bioact Mater. 2023;20:339–354. doi: 10.1016/j.bioactmat.2022.06.001.
  • Zhang L, Bei Z, Li T, et al. An injectable conductive hydrogel with dual responsive release of rosmarinic acid improves cardiac function and promotes repair after myocardial infarction. Bioact Mater. 2023;29:132–150. doi: 10.1016/j.bioactmat.2023.07.007.
  • Kim DH, Martin JT, Elliott DM, et al. Phenotypic stability, matrix elaboration and functional maturation of nucleus pulposus cells encapsulated in photocrosslinkable hyaluronic acid hydrogels. Acta Biomater. 2015;12:21–29. doi: 10.1016/j.actbio.2014.10.030.
  • Vercruysse KP, Marecak DM, Marecek JF, et al. Synthesis and in vitro degradation of new polyvalent hydrazide cross-Linked hydrogels of hyaluronic acid. Bioconjug Chem. 1997;8(5):686–694. doi: 10.1021/bc9701095.
  • Inukai M, Jin Y, Yomota C, et al. Preparation and characterization of Hyaluronate-Hydroxyethyl acrylate blend hydrogel for controlled release device. Chem Pharm Bull (Tokyo). 2000;48(6):850–854. doi: 10.1248/cpb.48.850.
  • Trombino S, Servidio C, Curcio F, et al. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics. 2019;11(8):407. doi: 10.3390/pharmaceutics11080407.
  • Paap MK, Silkiss RZ. The interaction between hyaluronidase and hyaluronic acid gel fillers - a review of the literature and comparative analysis. Plast Aesthet Res. 2020;7:36. doi: 10.20517/2347-9264.2020.121.
  • Wang G, Cao X, Dong H, et al. A hyaluronic acid based injectable hydrogel formed via Photo-Crosslinking reaction and Thermal-Induced Diels-Alder reaction for cartilage tissue engineering. Polymers (Basel). 2018;10(9):949. doi: 10.3390/polym10090949.
  • Hu X, Gao Z, Tan H, et al. An injectable hyaluronic acid-based composite hydrogel by DA click chemistry with pH sensitive nanoparticle for biomedical application. Front Chem. 2019;7:477. doi: 10.3389/fchem.2019.00477.
  • Lyu Y, Xie J, Liu Y, et al. Injectable hyaluronic acid hydrogel loaded with functionalized human mesenchymal stem cell aggregates for repairing infarcted myocardium. ACS Biomater Sci Eng. 2020;6(12):6926–6937. doi: 10.1021/acsbiomaterials.0c01344.
  • Xu K, Yao H, Fan D, et al. Hyaluronic acid thiol modified injectable hydrogel: Synthesis, characterization, drug release, cellular drug uptake and anticancer activity. Carbohydr Polym. 2021;254:117286. doi: 10.1016/j.carbpol.2020.117286.
  • Chen J, Han X, Deng J, et al. An injectable hydrogel based on phenylboronic acid hyperbranched macromer encapsulating gold nanorods and astragaloside IV nanodrug for myocardial infarction. Chem Eng J. 2021;413:127423. doi: 10.1016/j.cej.2020.127423.
  • Heher P, Mühleder S, Mittermayr R, et al. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev. 2018;129:134–147. doi: 10.1016/j.addr.2017.12.007.
  • Roberts IV, Bukhary D, Valdivieso CYL, et al. Fibrin matrices as (injectable) biomaterials: formation, clinical use, and molecular engineering. Macromol Biosci. 2020;20:1900283.
  • Kim J-A, An Y-H, Yim H-G, et al. Injectable fibrin/polyethylene oxide semi-IPN hydrogel for a segmental meniscal defect regeneration. Am J Sports Med. 2021;49(6):1538–1550. doi: 10.1177/0363546521998021.
  • An Y-H, Kim J-A, Yim H-G, et al. Meniscus regeneration with injectable pluronic/PMMA-reinforced fibrin hydrogels in a rabbit segmental meniscectomy model. J Tissue Eng. 2021;12:20417314211050141. 204173142110501. doi: 10.1177/34721832.
  • Melly L, Grosso A, Stanciu Pop C, et al. Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. J Tissue Eng Regen Med. 2020;14(10):1513–1523. doi: 10.1002/term.3118.
  • Kastana P, Zahra FT, Ntenekou D, et al. Matrigel plug assay for in vivo evaluation of angiogenesis. In: vigetti D, Theocharis AD, editors. Extracell matrix. [Internet]. New York, NY: Springer New York; 2019 [cited 2023 Sep 13]. p. 219–232. Available from: doi: 10.1007/978-1-4939-9133-4_18
  • Passaniti A, Kleinman HK, Martin GR. Matrigel: history/background, uses, and future applications. J Cell Commun Signal. 2022;16(4):621–626. doi: 10.1007/s12079-021-00643-1.
  • Kofidis T, De Bruin JL, Hoyt G, et al. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J Thorac Cardiovasc Surg. 2004;128(4):571–578. doi: 10.1016/j.jtcvs.2004.05.021.
  • Kofidis T, Lebl DR, Martinez EC, et al. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-Scale tissue restoration on the beating heart after myocardial injury. Circulation. 2005; [cited 2023 Sep 13]112(9 Suppl):I173–I177. [Internet]. Available from: . doi: 10.1161/CIRCULATIONAHA.104.526178.
  • Zhang P, Zhang H, Wang H, et al. Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs. 2006;30(2):86–93. doi: 10.1111/j.1525-1594.2006.00186.x.
  • Wang B, Wang M, Li Y, et al. Functional enhancement of acute infracted heart by coinjection of autologous adipose-derived stem cells with matrigel. Turk J Biol. 2023;47(3):170–185. doi: 10.55730/1300-0152.2653.
  • Peterson NC. From bench to cageside: risk assessment for rodent pathogen contamination of cells and biologics. Ilar J. 2008;49(3):310–315. doi: 10.1093/ilar.49.3.310.
  • Liu H, Bockhorn J, Dalton R, et al. Removal of lactate dehydrogenase-elevating virus from human-in-mouse breast tumor xenografts by cell-sorting. J Virol Methods. 2011;173(2):266–270. doi: 10.1016/j.jviromet.2011.02.015.
  • Cavo M, Caria M, Pulsoni I, et al. A new cell-laden 3D alginate-matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo. Sci Rep. 2018;8(1):5333. doi: 10.1038/s41598-018-23250-4.
  • Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. PROTEOMICS. 2010;10(9):1886–1890. doi: 10.1002/pmic.200900758.
  • Spence JR. Taming the wild west of organoids, enteroids, and Mini-Guts. Cell Mol Gastroenterol Hepatol. 2018;5(2):159–160. doi: 10.1016/j.jcmgh.2017.11.003.
  • Huch M, Knoblich JA, Lutolf MP, et al. The hope and the hype of organoid research. Development. 2017;144(6):938–941. doi: 10.1242/dev.150201.
  • Fujishige S, Kubota K, Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 1989;93(8):3311–3313. doi: 10.1021/j100345a085.
  • Das D, Ghosh P, Ghosh A, et al. Stimulus-Responsive, biodegradable, biocompatible, covalently cross-Linked hydrogel based on dextrin and poly (N -isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS Appl Mater Interfaces. 2015;7(26):14338–14351. doi: 10.1021/acsami.5b02975.
  • Soledad Lencina MM, Iatridi Z, Villar MA, et al. Thermoresponsive hydrogels from alginate-based graft copolymers. Eur Polym J. 2014;61:33–44. doi: 10.1016/j.eurpolymj.2014.09.011.
  • Wu S-W, Liu X, Miller AL, et al. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr Polym. 2018;192:308–316. doi: 10.1016/j.carbpol.2018.03.047.
  • Lee DJ, Cavasin MA, Rocker AJ, et al. An injectable sulfonated reversible thermal gel for therapeutic angiogenesis to protect cardiac function after a myocardial infarction. J Biol Eng. 2019;13(1):6. doi: 10.1186/s13036-019-0142-y.
  • Peña B, Maldonado M, Bonham AJ, et al. Gold Nanoparticle-Functionalized reverse thermal gel for tissue engineering applications. ACS Appl Mater Interfaces. 2019;11(20):18671–18680. doi: 10.1021/acsami.9b00666.
  • Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 2000;51(3):343–351. doi: 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D.
  • Elisseeff J, McIntosh W, Anseth K, et al. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J. Biomed. Mater. Res. 2000;51(2):164–171. doi: 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W.
  • Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23(22):4315–4323. doi: 10.1016/s0142-9612(02)00176-x.
  • Burdick JA, Mason MN, Hinman AD, et al. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Control Release. 2002;83(1):53–63. doi: 10.1016/s0168-3659(02)00181-5.
  • Williams CG, Kim TK, Taboas A, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003;9(4):679–688. doi: 10.1089/107632703768247377.
  • Dobner S, Bezuidenhout D, Govender P, et al. A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J Card Fail. 2009;15(7):629–636. doi: 10.1016/j.cardfail.2009.03.003.
  • Chow A, Stuckey DJ, Kidher E, et al. Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Rep. 2017;9(5):1415–1422. doi: 10.1016/j.stemcr.2017.09.003.
  • Zhou J, Yang X, Liu W, et al. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics. 2018;8(12):3317–3330. doi: 10.7150/thno.25504.
  • Catoira MC, Fusaro L, Di Francesco D, et al. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30:115.
  • Joo H, Han H, Cho S. Fabrication of poly(vinyl alcohol)-polyaniline nanofiber/graphene hydrogel for high-performance coin cell supercapacitor. Polymers (Basel). 2020;12(4):928. doi: 10.3390/polym12040928.
  • Pirahmadi P, Kokabi M, Alamdarnejad G. Polyvinyl alcohol/chitosan/carbon nanotubes electroactive shape memory nanocomposite hydrogels. J Appl Polym Sci. 2021;138:49995.
  • Guan H, Liu J, Liu D, et al. Elastic and conductive melanin/poly(vinyl alcohol) composite hydrogel for enhancing repair effect on myocardial infarction. Macromol Biosci. 2022;22:2200223.
  • Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 2002;20(1):16–21. doi: 10.1016/s0167-7799(01)01840-6.
  • Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009;5(3):817–831. doi: 10.1016/j.actbio.2008.09.018.
  • Carlini AS, Gaetani R, Braden RL, et al. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat Commun. 2019;10(1):1735. doi: 10.1038/s41467-019-09587-y.
  • Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B. 1997;101(51):11007–11028. doi: 10.1021/jp972167t.
  • Wright ER, Conticello VP. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev. 2002;54(8):1057–1073. doi: 10.1016/s0169-409x(02)00059-5.
  • Ozbas B, Kretsinger J, Rajagopal K, et al. Salt-Triggered peptide folding and consequent self-Assembly into hydrogels with tunable modulus. Macromolecules. 2004;37(19):7331–7337. doi: 10.1021/ma0491762.
  • Sur S, Tantakitti F, Matson JB, et al. Epitope topography controls bioactivity in supramolecular nanofibers. Biomater Sci. 2015;3(3):520–532. doi: 10.1039/c4bm00326h.
  • Lee S-J, Sohn Y-D, Andukuri A, et al. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell–derived endothelial cells encapsulated in a nanomatrix gel. Circulation. 2017;136(20):1939–1954. doi: 10.1161/CIRCULATIONAHA.116.026329.
  • Cheng B, Yan Y, Qi J, et al. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering. ACS Appl Mater Interfaces. 2018;10(15):12474–12484. doi: 10.1021/acsami.8b01725.
  • Han C, Zhou J, Liang C, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7(7):2920–2933. doi: 10.1039/c9bm00101h.
  • Huang J, Li Y, Zhang J, et al. The growth hormone secretagogue hexarelin protects rat cardiomyocytes from in vivo ischemia/reperfusion injury through interleukin-1 signaling pathway. Int Heart J. 2017;58(2):257–263. doi: 10.1536/ihj.16-241.
  • Berlanga-Acosta J, Abreu-Cruz A, Barco Herrera DG, et al. Synthetic growth Hormone-Releasing peptides (GHRPs): a historical appraisal of the evidences supporting their cytoprotective effects. Clin Med Insights Cardiol. 2017;11:1179546817694558. 117954681769455. doi: 10.1177/1179546817694558.
  • Saludas L, Pascual-Gil S, Prósper F, et al. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017;523(2):454–475. doi: 10.1016/j.ijpharm.2016.10.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.