102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of liquid-to-solid ratio and gamma irradiation on the rheology and cytocompatibility of a beta-tricalcium phosphate-based injectable bone substitute

, , & ORCID Icon
Pages 1086-1104 | Received 27 Nov 2023, Accepted 09 Feb 2024, Published online: 24 Feb 2024

References

  • Hou Q, De Bank PA, Shakesheff KM. Injectable scaffolds for tissue regeneration. J Mater Chem. 2004;14(13):1915. doi: 10.1039/b401791a.
  • Tang Z, Li X, Tan Y, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater. 2017;5(1):43–59. doi: 10.1093/rb/rbx024.
  • Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev. 2020;160:212–233. doi: 10.1016/j.addr.2020.10.011.
  • Nich C, Hamadouche M. 1.120—Synthetic bone grafts: clinical use. Comprehensive Biomaterials. 12011:335–347.
  • Gbureck U, Barralet JE, Spatz K, et al. Ionic modification of calcium phosphate cement viscosity. Part I: ypodermic injection and strength improvement of apatite cement. Biomaterials. 2004;25(11):2187–2195. Epub 2004/01/27.
  • Champion E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013;9(4):5855–5875. doi: 10.1016/j.actbio.2012.11.029.
  • Mangkonsu C, Kunio I, Bunhan L, et al. The effect of microwave sintering on the microstructure and properties of calcium phosphate ceramic. Procedia Chem. 2016;19:498–504. doi: 10.1016/j.proche.2016.03.044.
  • Veljović D, Palcevskis E, Dindune A, et al. Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J Mater Sci. 2010;45(12):3175–3183. doi: 10.1007/s10853-010-4324-8.
  • Laasri S, Taha M, Hlil EK, et al. Manufacturing and mechanical properties of calcium phosphate biomaterials. Comptes Rendus Mécanique. 2012;340(10):715–720. doi: 10.1016/j.crme.2012.09.005.
  • Koerten HK, van der Meulen J. Degradation of calcium phosphate ceramics. J Biomed Mater Res. 1999;44(1):78–86.
  • Lu J, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63(4):408–412. Epub 2002/07/13. doi: 10.1002/jbm.10259.
  • Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–8045. doi: 10.1016/j.actbio.2013.06.014.
  • Ray RD, Ward AA, Jr. A preliminary report on studies of basic calcium phosphate in bone replacement. Surg Forum. 1951:429–434. Epub 1951/01/01.
  • Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83-A Suppl 2 Pt 2(2):98–103. doi: 10.2106/00004623-200100022-00007.
  • Gao P, Zhang H, Liu Y, et al. Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo. Sci Rep. 2016;6(1):23367. doi: 10.1038/srep23367.
  • Wang J, Chen W, Li Y, et al. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials. 1998;19(15):1387–1392. Epub 1998/10/03. doi: 10.1016/s0142-9612(98)00014-3.
  • Rust KR, Singleton GT, Wilson J, et al. Bioglass middle ear prosthesis: long-term results. Am J Otolaryngol. 1996;17(3):371–374.
  • Rosenberg ES, Cho SC, Elian N, et al. A comparison of characteristics of implant failure and survival in periodontally compromised and periodontally healthy patients: a clinical report. Int J Oral Maxillofac Implants. 2004;19(6):873–879.
  • Yukna RA, Evans GH, Aichelmann-Reidy MB, et al. Clinical comparison of bioactive glass bone replacement graft material and expanded polytetrafluoroethylene barrier membrane in treating human mandibular molar class II furcations. J Periodontol. 2001;72(2):125–133. doi: 10.1902/jop.2001.72.2.125.
  • Norton MR, Wilson J. Dental implants placed in extraction sites implanted with bioactive glass: human histology and clinical outcome. Int J Oral Maxillofac Implants. 2002;17(2):249–257.
  • Ilharreborde B, Morel E, Fitoussi F, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis a comparative study with iliac crest autograft. J Pediatr Orthop. 2008;28(3):347–351. doi: 10.1097/BPO.0b013e318168d1d4.
  • Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–1017. doi: 10.1126/science.1067404.
  • Vogel M, Voigt C, Gross UM, et al. In vivo comparison of bioactive glass particles in rabbits. Biomaterials. 2001;22(4):357–362.
  • Vogel M, Voigt C, Knabe C, et al. Development of multinuclear giant cells during the degradation of bioglass particles in rabbits. J Biomed Mater Res A. 2004;70(3):370–379. doi: 10.1002/jbm.a.30048.
  • Lai W, Garino J, Ducheyne P. Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials. 2002;23(1):213–217.
  • Lai W, Garino J, Flaitz C, et al. Excretion of resorption products from bioactive glass implanted in rabbit muscle. J Biomed Mater Res A. 2005;75(2):398–407. doi: 10.1002/jbm.a.30425.
  • Liu C, He H. Developments and applications of calcium phosphate bone cements. Singapore: Springer; 2018.
  • Aberg J, Henriksson HB, Engqvist H, et al. Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement. J Biomed Mater Res A. 2012;100(5):1269–1278. doi: 10.1002/jbm.a.34065.
  • Feighan JE, Davy D, Prewett AB, et al. Induction of bone by a demineralized bone matrix gel: a study in a rat femoral defect model. J Orthop Res. 1995;13(6):881–891. Epub 1995/11/01. doi: 10.1002/jor.1100130612.
  • Pagliaro M, Rossi M. Chapter 1: Glycerol: properties and production. In: Pagliaro M, Rossi M, editors. Green Chemistry Book Series: The future of glycerol: new uses of a versatile raw material. Royal Society of Chemistry; 2008.
  • Perez RA, Kim H-W, Ginebra M-P. Polymeric additives to enhance the functional properties of calcium phosphate cements. Tissue Eng. 2012;3(1):2041731412439555.
  • Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23(22):4315–4323. doi: 10.1016/S0142-9612(02)00176-X.
  • Lin C-C, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631–643. doi: 10.1007/s11095-008-9801-2.
  • Suggs LJ, Kao EY, Palombo LL, et al. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomater Sci Polym Ed. 1998;9(7):653–666. Epub 1998/08/01.
  • Sanjeeva Rao B, Venkatappa Rao T, Madhukar K, et al. ESR and FTIR study of gamma irradiated poly (ethylene glycol). Int J Chem Sci. 2009;7(4):2434–2440.
  • He L, Dong G, Deng C. Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation. Ceram Int. 2016;42(10):11918–11923. doi: 10.1016/j.ceramint.2016.04.116.
  • Marcos MA, Cabaleiro D, Guimarey MJG, et al. PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets. Nanomaterials (Basel). 2017;8(1):16. doi: 10.3390/nano8010016.
  • Yunos MZB, Rahman WAWA. Effect of glycerol on performance rice straw/starch based polymer. J Appl Sci. 2011;11(13):2456–2459. doi: 10.3923/jas.2011.2456.2459.
  • Zhang J, Zhou H, Yang K, et al. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials. 2013;34(37):9381–9392. Epub 2013/09/21. doi: 10.1016/j.biomaterials.2013.08.059.
  • Wei J, Jia J, Wu F, et al. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials. 2010;31(6):1260–1269. Epub 2009/11/26. doi: 10.1016/j.biomaterials.2009.11.005.
  • Bohner M, Doebelin N, Baroud G. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur Cell Mater. 2006;12:26–35. Epub 2006/08/31. doi: 10.22203/ecm.v012a03.
  • Ghahremankhani AA, Dorkoosh F, Dinarvand R. PLGA-PEG-PLGA tri-block copolymers as in situ gel-forming peptide delivery system: effect of formulation properties on peptide release. Pharm Dev Technol. 2008;13(1):49–55. Epub 2008/02/27. doi: 10.1080/10837450701702842.
  • Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26(13):1553–1563. Epub 2004/11/04. doi: 10.1016/j.biomaterials.2004.05.010.
  • Habib M, Baroud G, Gitzhofer F, et al. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Part II: particle separation study. Acta Biomater. 2010;6(1):250–256. Epub 2009/06/16. doi: 10.1016/j.actbio.2009.06.012.
  • Habib M, Baroud G, Gitzhofer F, et al. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008;4(5):1465–1471. Epub 2008/05/01. doi: 10.1016/j.actbio.2008.03.004.
  • Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: what benefits the combination of calcium phosphates and bioactive glasses could bring? Bioact Mater. 2023;19:217–236. doi: 10.1016/j.bioactmat.2022.04.007.
  • Liu W, Zhang J, Rethore G, et al. A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomater. 2014;10(7):3335–3345. doi: 10.1016/j.actbio.2014.03.009.
  • Setz LFG, Silva AC, Santos SC, et al. A viscoelastic approach from α-Al2O3 suspensions with high solids content. J Eur Ceram Soc. 2013;33(15-16):3211–3219. doi: 10.1016/j.jeurceramsoc.2013.06.002.
  • Nehdi M, Al Martini S. Estimating time and temperature dependent yield stress of cement paste using oscillatory rheology and genetic algorithms. Cem Concr Res. 2009;39(11):1007–1016. doi: 10.1016/j.cemconres.2009.07.011.
  • Pina S, Olhero S, Gheduzzi S, et al. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater. 2009;5(4):1233–1240. doi: 10.1016/j.actbio.2008.11.026.
  • Sohrabi M, Hesaraki S, Kazemzadeh A, et al. Development of injectable biocomposites from hyaluronic acid and bioactive glass nano-particles obtained from different sol–gel routes. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3730–3744. doi: 10.1016/j.msec.2013.05.005.
  • Sohrabi M, Hesaraki S, Kazemzadeh A. The influence of polymeric component of bioactive glass‐based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate. J Biomed Mater Res B Appl Biomater. 2014;102(3):561–573. doi: 10.1002/jbm.b.33035.
  • Şahin E, Kalyon DM. The rheological behavior of a fast-setting calcium phosphate bone cement and its dependence on deformation conditions. J Mech Behav Biomed Mater. 2017;72:252–260. doi: 10.1016/j.jmbbm.2017.05.017.
  • Albulescu R, Popa AC, Enciu AM, et al. Comprehensive in vitro testing of calcium phosphate-based bioceramics with orthopedic and dentistry applications. Materials (Basel). 2019;12(22):3704. Epub 2019/11/14. doi: 10.3390/ma12223704.
  • Przekora A, Czechowska J, Pijocha D, et al. Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro? Central Eur J Biol. 2014;9(3):277–289. doi: 10.2478/s11535-013-0261-2.
  • Velard F, Braux J, Amedee J, et al. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater. 2013;9(2):4956–4963. Epub 2012/10/06. doi: 10.1016/j.actbio.2012.09.035.
  • Suzuki T, Ohashi R, Yokogawa Y, et al. Initial anchoring and proliferation of fibroblast L-929 cells on unstable surface of calcium phosphate ceramics. J Biosci Bioeng. 1999;87(3):320–327. Epub 2005/10/20.
  • Nakagawa Y, Muneta T, Tsuji K, et al. β-tricalcium phosphate micron particles enhance calcification of human mesenchymal stem cells in vitro. J Nanomater. 2013;2013:1–13. 2013: doi: 10.1155/2013/426786.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.