112
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Tissue engineering in otology: a review of achievements

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1105-1153 | Received 19 Oct 2023, Accepted 09 Feb 2024, Published online: 22 Feb 2024

References

  • Olusanya BO, Davis AC, Hoffman HJ. Hearing loss: rising prevalence and impact. Bull World Health Organ. 2019;97(10):646–646A. doi:10.2471/BLT.19.224683.
  • Vaisbuch Y, Santa Maria PL. Age-related hearing loss: innovations in hearing augmentation. Otolaryngol Clin North Am. 2018;51(4):705–723. doi:10.1016/j.otc.2018.03.002.
  • Schilder AGM, Chonmaitree T, Cripps AW, et al. Otitis media. Nat Rev Dis Primers. 2016;2(1):16063. doi:10.1038/nrdp.2016.63.
  • Guirguis D, Parham K. Operative techniques in otolaryngology: hearing restoration options. Oper Tech Otolaryngol – Head Neck Surg. 2020;31(3):223–230. doi:10.1016/j.otot.2020.07.007.
  • Chen Q, Zhang J, Wang B, et al. Total auricular reconstruction using a single extended postauricular flap without skin grafting in two stages: experiences of 106 cases. Aesthetic Plast Surg. 2020;44(2):365–372. doi:10.1007/s00266-019-01459-6.
  • Nayyer L, Patel KH, Esmaeili A, et al. Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg. 2012;129(5):1123–1137. doi:10.1097/PRS.0b013e31824a2c1c.
  • Humphries S, Joshi A, Webb WR, et al. Auricular reconstruction: where are we now? A critical literature review. Eur Arch Otorhinolaryngol. 2022;279(2):541–556. doi:10.1007/s00405-021-06903-5.
  • Maharajan N, Cho GW, Jang CH. Application of mesenchymal stem cell for tympanic membrane regeneration by tissue engineering approach. Int J Pediatr Otorhinolaryngol. 2020;133:109969. doi:10.1016/j.ijporl.2020.109969.
  • Chan LL, Manolidis S, Taber KH, et al. Surgical anatomy of the temporal bone: an atlas. Neuroradiology. 2001;43(10):797–808. doi:10.1007/s002340100631.
  • Anschuetz L, Siggemann T, Dür C, et al. Teaching middle ear anatomy and basic ear surgery skills: a qualitative study comparing endoscopic and microscopic techniques. Otolaryngol Head Neck Surg. 2021;165(1):174–181. doi:10.1177/0194599820977191.
  • Khonsary SA. Book review: atlas of anatomy-head, neck, and neuroanatomy. Surg Neurol Int. 2020;11.
  • Qiu X, Müller U. Sensing sound: cellular specializations and molecular force sensors. Neuron. 2022;110(22):3667–3687. doi:10.1016/j.neuron.2022.09.018.
  • Chimerad M, Barazesh A, Zandi M, et al. Tissue engineered scaffold fabrication methods for medical applications. Int J Polym Mater Polym Biomater. 2022;72(18):1455-1479.
  • McMillan A, McMillan N, Gupta N, et al. 3D bioprinting in otolaryngology: a review. Adv Healthc Mater. 2023;12(19):e2203268. doi:10.1002/adhm.202203268.
  • Reiffel A, Zhou S, Chan S, et al. NESPS – CAD-CAM Tissue Engineering of Auricular Cartilage Scaffolds for Reconstruction of Pediatric Microtia. Northeast. Soc. Plast. Surg. [Internet]. 2011; Available from: http://meeting.nesps.org/2011/47.cgi.
  • Su Y, Müller CA, Xiong X, et al. Reshapable osteogenic biomaterials combining flexible melt electrowritten organic fibers with inorganic bioceramics. Nano Lett. 2022;22(9):3583–3590. doi:10.1021/acs.nanolett.1c04995.
  • Nemati Mahand S, Niknami N, Moghaddam A, et al. Application of stem cells, growth factors, small molecules, and biological macromolecules on nerve regeneration: a review and future direction. Int J Polym Mater Polym Biomater. 2023;72:1–33. doi:10.1080/00914037.2023.2215376.
  • Bhamare N, Tardalkar K, Khadilkar A, et al. Tissue engineering of human ear pinna. Cell Tissue Bank. 2022;23(3):441–457. doi:10.1007/s10561-022-09991-7.
  • Soliman L, Borrelli MR, Sobti N, et al. Frameworks for total ear reconstruction: past, present and future directions. J 3D Print Med. 2022;6(4):195–211. doi:10.2217/3dp-2022-0018.
  • Nazempour M, Mehrabani D, Mehdinavaz-Aghdam R, et al. The effect of allogenic human wharton’s jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. J Cosmet Dermatol. 2020;19(4):995–1001. doi:10.1111/jocd.13109.
  • Khodakaram-Tafti A, Mehrabani D, Shaterzadeh-Yazdi H, et al. Tissue engineering in maxillary bone defects. World J Plast Surg [Internet]. 2018;7:3–11. http://www.ncbi.nlm.nih.gov/pubmed/29651386%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5890360.
  • Mehrabani D, Khodakaram-Tafti A, Shaterzadeh-Yazdi H, et al. Comparison of the regenerative effect of adipose-derived stem cells, fibrin glue scaffold, and autologous bone graft in experimental mandibular defect in rabbit. Dent Traumatol. 2018;34(6):413–420. doi:10.1111/edt.12435.
  • Singh AK, Sundram S, Malviya R. Human-derived biomaterials for biomedical and tissue engineering applications. Curr Pharm Des. 2023;29(8):584–603. doi:10.2174/1381612829666230320103412.
  • Krishani M, Shin WY, Suhaimi H, et al. Development of scaffolds from bio-based natural materials for tissue regeneration applications: a review. Gels. 2023;9(2):100. doi:10.3390/gels9020100.
  • Chen J, Fan Y, Dong G, et al. Designing biomimetic scaffolds for skin tissue engineering. Biomater Sci. 2023;11(9):3051–3076. doi:10.1039/d3bm00046j.
  • Amini S, Salehi H, Setayeshmehr M, et al. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: advantages and disadvantages. Polymers for Advanced Techs. 2021;32(6):2267–2289. doi:10.1002/pat.5263.
  • Radulescu DM, Neacsu IA, Grumezescu AM, et al. New insights of scaffolds based on hydrogels in tissue engineering. Polymers 2022;14(4):799. doi:10.3390/polym14040799.
  • Ajay E, Gunewardene N, Richardson R. Emerging therapies for human hearing loss. Expert Opin Biol Ther. 2022;22(6):689–705. doi:10.1080/14712598.2022.2072208.
  • Koleilat A, Driscoll CLW, Schimmenti LA, et al. Emerging therapies and approaches to treat and prevent hearing loss. Perspect ASHA SIGs. 2020;5(5):1147–1165. doi:10.1044/2020_PERSP-20-00072.
  • Stocco E, Barbon S, Mammana M, et al. Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: a systematic literature review. J Tissue Eng. 2023;14:204173142311518. doi:10.1177/20417314231151826.
  • Johnson RF, Lambert EM. Updates in pediatric otolaryngology. Otolaryngol Clin North Am Elsevier Health Sciences. 2022;55(6). doi:10.1016/S0030-6665(22)00155-4.
  • Anand S, Danti S, Moroni L, et al. Regenerative therapies for tympanic membrane. Prog Mater Sci. 2022;127:100942. doi:10.1016/j.pmatsci.2022.100942.
  • De Pieri A, Rochev Y, Zeugolis DI. Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med. 2021;6(1):18. doi:10.1038/s41536-021-00133-3.
  • Singh S, Kumar Paswan K, Kumar A, et al. Recent advancements in polyurethane-based tissue engineering. ACS Appl Bio Mater. 2023;6(2):327–348. doi:10.1021/acsabm.2c00788.
  • Rao KM, Choi SM, Han SS. A review on directional muscle cell growth in scaffolding biomaterials with aligned porous structures for cultivated meat production. Food Res Int. 2023;168:112755. doi:10.1016/j.foodres.2023.112755.
  • Guan T, Li J, Chen C, et al. Self-assembling peptide-based hydrogels for wound tissue repair. Adv Sci. 2022;9:2104165.
  • Christy PN, Basha SK, Kumari VS, et al. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – a review. J Drug Deliv Sci Technol. 2020;55:101452. doi:10.1016/j.jddst.2019.101452.
  • Suamte L, Tirkey A, Babu PJ. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications. Smart Mater Med. 2023;4:243–256. doi:10.1016/j.smaim.2022.09.005.
  • Biswas MC, Jony B, Nandy PK, et al. Recent advancement of biopolymers and their potential biomedical applications. J Polym Environ. 2022;30(1):51–74. doi:10.1007/s10924-021-02199-y.
  • Loukelis K, Helal ZA, Mikos AG, et al. Nanocomposite bioprinting for tissue engineering applications. Gels. 2023;9(2):103. doi:10.3390/gels9020103.
  • Clarissa WHY, Chia CH, Zakaria S, et al. Recent advancement in 3-D printing: nanocomposites with added functionality. Prog Addit Manuf. 2022;7(2):325–350. doi:10.1007/s40964-021-00232-z.
  • Mahdian M, Tabatabai TS, Abpeikar Z, et al. Nerve regeneration using decellularized tissues: challenges and opportunities. Front Neurosci. 2023;17:1295563. doi:10.3389/fnins.2023.1295563.
  • Sharifi M, Kheradmandi R, Salehi M, et al. Criteria, challenges, and opportunities for acellularized allogeneic/xenogeneic bone grafts in bone repairing. ACS Biomater Sci Eng. 2022;8(8):3199–3219. doi:10.1021/acsbiomaterials.2c00194.
  • Utomo L, Pleumeekers MM, Nimeskern L, et al. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomed Mater. 2015;10(1):015010. doi:10.1088/1748-6041/10/1/015010.
  • Gharibshahian M, Salehi M, Beheshtizadeh N, et al. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol. 2023;11:1168504. doi:10.3389/fbioe.2023.1168504.
  • Khan ZN, Albalawi HI, Valle-Pérez AU, et al. From 3D printed molds to bioprinted scaffolds: a hybrid material extrusion and vat polymerization bioprinting approach for soft matter constructs. Mater Sci Addit Manuf. 2022;1(7):1–9. doi:10.18063/msam.v1i1.7.
  • Jung BK, Kim JY, Kim YS, et al. Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique. J Biomed Mater Res B Appl Biomater. 2019;107(4):1295–1303. doi:10.1002/jbm.b.34222.
  • Jia L, Zhang Y, Yao L, et al. Regeneration of human-ear-shaped cartilage with acellular cartilage matrix-based biomimetic scaffolds. Appl Mater Today. 2020;20:100639. doi:10.1016/j.apmt.2020.100639.
  • Han S, Zhang Z, Chen J, et al. Preparation of antibacterial gelatin/genipin nanofibrous membrane for tympanic membrane repair. Molecules. 2022;27(9):2154–2167. doi:10.3390/molecules27092906.
  • Danti S, D’Alessandro D, Pietrabissa A, et al. Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. J Biomed Mater Res – Part A. 2010;92:1343–1356.
  • Wang Q, Ran X, Wang J, et al. Elastic fiber-Reinforced silk fibroin scaffold with a Double-Crosslinking network for human ear-shaped cartilage regeneration. Adv Fiber Mater. 2023;5(3):1008–1024. doi:10.1007/s42765-023-00266-8.
  • Mozaffari M, Nash R, Tucker AS. Anatomy and Development of the Mammalian External Auditory Canal: Implications for Understanding Canal Disease and Deformity. Front Cell Dev Biol 2021; 8:617354.
  • Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and challenges in transplantation of mesenchymal stem cells in otorhinolaryngology. J Clin Med. 2021;10(13):2940. doi:10.3390/jcm10132940.
  • Tahmasebi E, Mohammadi M, Alam M, et al. The current regenerative medicine approaches of craniofacial diseases: a narrative review. Front Cell Dev Biol. 2023;11:1112378. doi:10.3389/fcell.2023.1112378.
  • Truong MT, Liu YCC, Kohn J, et al. Integrated microtia and aural atresia management. Front Surg. 2022;9:944223. doi:10.3389/fsurg.2022.944223.
  • Tuang GJ, Mansor M, Abdullah A. An unusual delayed complication of rib graft microtia reconstruction after two decades: a case report. Indian J Otolaryngol Head Neck Surg. 2022;74(Suppl 3):3671–3674. doi:10.1007/s12070-020-02316-8.
  • Jafarian Z, Zarrati S, Afshar MK. Description of the surgical and prosthetic workflow of a patient rehabilitated with implant-Retained auricular prosthesis. J Kerman Univ Med Sci. 2023;30:117–122.
  • Mussi E, Furferi R, Volpe Y, et al. Ear reconstruction simulation: from handcrafting to 3D printing. Bioengineering. 2019;6(1):14. doi:10.3390/bioengineering6010014.
  • Davis S, Roldo M, Blunn G, et al. Influence of the mechanical environment on the regeneration of osteochondral defects. Front Bioeng Biotechnol. 2021;9:603408. doi:10.3389/fbioe.2021.603408.
  • Rodriguez A, Cao YL, Ibarra C, et al. Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg. 1999;103(4):1111–1119. doi:10.1097/00006534-199904040-00001.
  • Zhang R, Liang C, Qin T, et al. Tissue-engineered auricled cartilage: an experimental study. Zhonghua Er Bi Yan Hou Ke Za Zhi. 2002;37(5):329–332.
  • Naumann A, Aigner J, Staudenmaier R, et al. Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography. Eur Arch Otorhinolaryngol. 2003;260(10):568–575. doi:10.1007/s00405-003-0636-5.
  • Yamaoka H, Asato H, Ogasawara T, et al. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res – Part A. 2006;78:1–11.
  • Chetty A, Steynberg T, Moolman S, et al. Hydroxyapatite-coated polyurethane for auricular cartilage replacement: an in vitro study. J Biomed Mater Res – Part A. 2008;84:475–482.
  • Liu Y, Zhang L, Zhou G, et al. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials. 2010;31(8):2176–2183. doi:10.1016/j.biomaterials.2009.11.080.
  • Kang N, Liu X, Yan L, et al. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro. Cells Tissues Organs. 2014 ;198(5):357–366. doi:10.1159/000357669.
  • Kang N, Liu X, Cao Y, et al. [Comparison study of tissue engineered cartilage constructed with chondrocytes derived from porcine auricular and articular cartilage]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2014;30:33–40.
  • Zhang L, He A, Yin Z, et al. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials. 2014;35(18):4878–4887. doi:10.1016/j.biomaterials.2014.02.043.
  • Lee JS, Hong JM, Jung JW, et al. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103. doi:10.1088/1758-5082/6/2/024103.
  • He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep. 2014;4(1):6973. doi:10.1038/srep06973.
  • Mota C, Milazzo M, Panetta D, et al. 3D fiber deposited polymeric scaffolds for external auditory canal wall. J Mater Sci Mater Med. 2018;29:1–14.
  • Chiu LLY, Weber JF, Waldman SD. Engineering of scaffold-free tri-layered auricular tissues for external ear reconstruction. Laryngoscope. 2019;129(8):E272–E283. doi:10.1002/lary.27823.
  • Chiesa-Estomba CM, Hernáez-Moya R, Rodiño C, et al. Ex vivo maturation of 3D-printed, chondrocyte-Laden, Polycaprolactone-Based scaffolds prior to transplantation improves engineered cartilage substitute properties and integration. Cartilage. 2022;13(4):105–118. doi:10.1177/19476035221127638.
  • Chen J, Huang T, Liu R, et al. Congenital microtia patients: the genetically engineered exosomes released from porous gelatin methacryloyl hydrogel for downstream small RNA profiling, functional modulation of microtia chondrocytes and tissue-engineered ear cartilage regeneration. J Nanobiotechnology. 2022;20:1–23.
  • Mohammadpour Z, Kharaziha M, Zarrabi A. 3D-printing of silk nanofibrils reinforced alginate for soft tissue engineering. Pharmaceutics. 2023;15(3):763. doi:10.3390/pharmaceutics15030763.
  • Donnelly H, Kurjan A, Yong LY, et al. Fibronectin matrix assembly and TGFβ1 presentation for chondrogenesis of patient derived pericytes for microtia repair. Biomater Adv. 2023;148:213370. doi:10.1016/j.bioadv.2023.213370.
  • Cao Y, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100(2):297–302. doi:10.1097/00006534-199708000-00001.
  • Ruszymah BHI, Chua KH, Mazlyzam AL, et al. Formation of tissue engineered composite construct of cartilage and skin using high density polyethylene as inner scaffold in the shape of human helix. Int J Pediatr Otorhinolaryngol. 2011;75(6):805–810. doi:10.1016/j.ijporl.2011.03.012.
  • Saim AB, Cao Y, Weng Y, et al. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope. 2000;110(10 Pt 1):1694–1697. doi:10.1097/00005537-200010000-00023.
  • Haisch A, Kläring S, Gröger A, et al. A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol. 2002;259(6):316–321. doi:10.1007/s00405-002-0446-1.
  • Kamil SH, Kojima K, Vacanti MP, et al. In vitro tissue engineering to generate a human-sized auricle and nasal tip. Laryngoscope. 2003;113(1):90–94. doi:10.1097/00005537-200301000-00017.
  • Park SS, Jin HR, Chi DH, et al. Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials. 2004;25(12):2363–2369. doi:10.1016/j.biomaterials.2003.09.019.
  • Shieh SJ, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials. 2004;25(9):1545–1557. doi:10.1016/s0142-9612(03)00501-5.
  • Kamil SH, Vacanti MP, Aminuddin BS, et al. Tissue engineering of a human sized and shaped auricle using a mold. Laryngoscope. 2004;114(5):867–870. doi:10.1097/00005537-200405000-00015.
  • Isogai N, Asamura S, Higashi T, et al. Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte-poly(L-lactide-ε-caprolactone) scaffolds. Tissue Eng. 2004;10(5–6):673–687. doi:10.1089/1076327041348527.
  • Isogai N, Morotomi T, Hayakawa S, et al. Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct. J Biomed Mater Res – Part A. 2005;74:408–418.
  • Xu J-W, Johnson TS, Motarjem PM, et al. Tissue-engineered flexible ear-shaped cartilage. Plast Reconstr Surg. 2005;115(6):1633–1641. doi:10.1097/01.prs.0000161465.21513.5d.
  • Chung C, Mesa J, Randolph MA, et al. Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J Biomed Mater Res – Part A. 2006;77:518–525.
  • Kusuhara H, Isogai N, Enjo M, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen. 2009;17(1):136–146. doi:10.1111/j.1524-475X.2008.00451.x.
  • Fujihara Y, Takato T, Hoshi K. Immunological response to tissue-engineered cartilage derived from auricular chondrocytes and a PLLA scaffold in transgenic mice. Biomaterials. 2010;31(6):1227–1234. doi:10.1016/j.biomaterials.2009.10.053.
  • Lee SJ, Broda C, Atala A, et al. Engineered cartilage covered ear implants for auricular cartilage reconstruction. Biomacromolecules. 2011;12(2):306–313. doi:10.1021/bm100856g.
  • Zhou L, Pomerantseva I, Bassett EK, et al. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A. 2011;17(11–12):1573–1581. doi:10.1089/ten.TEA.2010.0627.
  • Papadopoulos A, Bichara DA, Zhao X, et al. Injectable and photopolymerizable tissue-engineered auricular cartilage using poly(ethylene glycol) dimethacrylate copolymer hydrogels. Tissue Eng Part A. 2011;17(1–2):161–169. doi:10.1089/ten.TEA.2010.0253.
  • Xue J, Feng B, Zheng R, et al. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials. 2013;34(11):2624–2631. doi:10.1016/j.biomaterials.2012.12.011.
  • Sterodimas A, De Faria J. Human auricular tissue engineering in an immunocompetent animal model. Aesthet Surg J. 2013;33(2):283–289. doi:10.1177/1090820X12472902.
  • von Bomhard A, Veit J, Bermueller C, et al. Prefabrication of 3D cartilage contructs: towards a tissue engineered Auricle – A model tested in rabbits. PLoS One. 2013;8(8):e71667. doi:10.1371/journal.pone.0071667.
  • Odabas S, Feichtinger GA, Korkusuz P, et al. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. J Tissue Eng Regen Med. 2013;7:831–840.
  • Zheng R, Duan H, Xue J, et al. The influence of gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials. 2014;35(1):152–164. doi:10.1016/j.biomaterials.2013.09.082.
  • Hohman MH, Lindsay RW, Pomerantseva I, et al. Ovine model for auricular reconstruction: porous polyethylene implants. Ann Otol Rhinol Laryngol. 2014;123(2):135–140. doi:10.1177/0003489414523710.
  • Cheng Y, Cheng P, Xue F, et al. Repair of ear cartilage defects with allogenic bone marrow mesenchymal stem cells in rabbits. Cell Biochem Biophys. 2014;70(2):1137–1143. doi:10.1007/s12013-014-0033-2.
  • Hwang CM, Lee BK, Green D, et al. Auricular reconstruction using tissue-engineered alloplastic implants for improved clinical outcomes. Plast Reconstr Surg. 2014;133(3):360e–369e. doi:10.1097/01.prs.0000438460.68098.4b.
  • bin IMF, See GB, Hui CK, et al. The formation of human auricular cartilage from microtic tissue: an in vivo study. Int J Pediatr Otorhinolaryngol. 2015;79:1634–1639.
  • Zhou L, Ding R, Li B, et al. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia. Int J Clin Exp Pathol. 2015;8:73–80.
  • Pomerantseva I, Bichara DA, Tseng A, et al. Ear-Shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A. 2016;22(3–4):197–207. doi:10.1089/ten.TEA.2015.0173.
  • Nakao H, Jacquet RD, Shasti M, et al. Long-Term comparison between human normal conchal and microtia chondrocytes regenerated by tissue engineering on nanofiber polyglycolic acid scaffolds. Plast Reconstr Surg. 2017;139(4):911e–921e. doi:10.1097/PRS.0000000000003201.
  • Gu Y, Kang N, Dong P, et al. Chondrocytes from congenital microtia possess an inferior capacity for in vivo cartilage regeneration to healthy ear chondrocytes. J Tissue Eng Regen Med. 2018;12:e1737–e1746.
  • Xia H, Zhao D, Zhu H, et al. Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration. ACS Appl Mater Interfaces. 2018;10(37):31704–31715. doi:10.1021/acsami.8b10926.
  • Zopf DA, Flanagan CL, Mitsak AG, et al. Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. Int J Pediatr Otorhinolaryngol. 2018;114:170–174. doi:10.1016/j.ijporl.2018.07.033.
  • Miśkiewicz S, Grobelski B, Pasieka Z, et al. The testing of an artificial modified bacterial cellulose auricle skeleton in an animal model. Pol Przegl Chir. 2019;91(2):7–11. doi:10.5604/01.3001.0012.8551.
  • Uto S, Hikita A, Sakamoto T, et al. Ear cartilage reconstruction combining induced pluripotent stem cell-derived cartilage and three-dimensional shape-Memory scaffold. Tissue Eng Part A. 2021;27(9–10):604–617. doi:10.1089/ten.TEA.2020.0106.
  • Yue H, Pathak JL, Zou R, et al. Fabrication of chondrocytes/chondrocyte-microtissues laden fibrin gel auricular scaffold for microtia reconstruction. J Biomater Appl. 2021;35(7):838–848. doi:10.1177/0885328220954415.
  • Brennan JR, Cornett A, Chang B, et al. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. J Biomed Mater Res B Appl Biomater. 2021;109(3):394–400. doi:10.1002/jbm.b.34707.
  • Zeng Y, Li X, Liu X, et al. PLLA porous microsphere-reinforced silk-based scaffolds for auricular cartilage regeneration. ACS Omega. 2021;6(4):3372–3383. doi:10.1021/acsomega.0c05890.
  • Bhamare NC. Development of 3D Printing for Tissue Engineering of Ear Pinna. 2021;
  • Park SH, Kim H, Lee YY, et al. Development of intracorporeal differentiation of stem cells to induce one-Step mastoid bone reconstruction during otitis media surgeries. Polymers (Basel). 2022;14(5):877. doi:10.3390/polym14050877.
  • Tada T, Ohnishi H, Yamamoto N, et al. Transplantation of a human induced pluripotent stem cell-derived airway epithelial cell sheet into the Middle ear of rats. Regen Ther. 2022;19:77–87. doi:10.1016/j.reth.2022.01.001.
  • Shimizu R, Asawa Y, Komura M, et al. Superior stemness of a rapidly growing subgroup of isolated human auricular chondrocytes and the potential for use in cartilage regenerative therapy. Regen Ther. 2022;19:47–57. doi:10.1016/j.reth.2021.12.005.
  • Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater. 2022;16:66–81.
  • Hassan T, Maher M, El Karmoty A, et al. Regenerative therapy of rabbit ear cartilage using adipose derived stem cells and platelet rich fibrin. Vet Med J. 2022;64–79.
  • Gui X, Peng Z, Song P, et al. 3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction. Bio-Design Manuf. 2023;6:451–463.
  • Paxton NC, Allenby MC, Lewis PM, et al. Biomedical applications of polyethylene. Eur Polym J. 2019;118:412–428. doi:10.1016/j.eurpolymj.2019.05.037.
  • Williams JD, Romo T, Sclafani AP, et al. Porous high-density polyethylene implants in auricular reconstruction. Arch Otolaryngol Head Neck Surg. 1997;123(6):578–583. doi:10.1001/archotol.1997.01900060020003.
  • Amirrah IN, Lokanathan Y, Zulkiflee I, et al. A comprehensive review on collagen type I development of biomaterials for tissue engineering: from biosynthesis to bioscaffold. Biomedicines. 2022;10(9):2307. doi:10.3390/biomedicines10092307.
  • Bernstein JL, Cohen BP, Lin A, et al. Tissue engineering auricular cartilage using late passage human auricular chondrocytes. Ann Plast Surg. 2018;80(4 Suppl 4):S168–S173. doi:10.1097/SAP.0000000000001400.
  • Bhamare NC, Tardalkar KR, Kshersagar J, et al. Tissue engineered human ear pinna derived from decellularized goat ear cartilage: clinically useful and biocompatible auricle construct. Cell Tissue Bank. 2022;23(1):43–55. doi:10.1007/s10561-021-09911-1.
  • Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics. 2023;13(8):2562–2587. doi:10.7150/thno.81785.
  • Zhang Q, Zhang R, Xu F, et al. Auricular reconstruction for microtia: personal 6-year experience based on 350 microtia ear reconstructions in China. Plast Reconstr Surg. 2009;123(3):849–858. doi:10.1097/PRS.0b013e318199f057.
  • Yanaga H, Imai K, Fujimoto T, et al. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg. 2009;124(3):817–825. doi:10.1097/PRS.0b013e3181b17c0e.
  • Romo T, Morris LGT, Reitzen SD, et al. Reconstruction of congenital microtia-atresia: outcomes with the medpor/bone-anchored hearing aid-approach. Ann Plast Surg. 2009;62(4):384–389. doi:10.1097/SAP.0b013e31819fae51.
  • Reinisch JF, Lewin S. Ear reconstruction using a porous polyethylene framework and temporoparietal fascia flap. Facial Plast Surg. 2009;25(3):181–189. doi:10.1055/s-0029-1239448.
  • Zhou G, Jiang H, Yin Z, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine. 2018;28:287–302. doi:10.1016/j.ebiom.2018.01.011.
  • Sakahara D, Yanaga H, Noto M, et al. Long-Term clinical results of two-stage total ear reconstruction of microtia using autologous cell-engineered chondrocytes. Plast Reconstr Surg. 2023;151(2):282E–287E. doi:10.1097/PRS.0000000000009854.
  • Sheikh A, Bint-e-Zainab SK, et al. Structure and physiology of human ear involved in hearing. Audit Syst – Funct Disord. IntechOpen. 2022.
  • Petit C, El-Amraoui A, Avan P. Audition: hearing and deafness. Neurosci. 21st century from basic to clin. 2nd ed. New York: Springer; 2016. p. 793–861.
  • Hu H, Chen J, Li S, et al. 3D printing technology and applied materials in eardrum regeneration. J Biomater Sci Polym Ed. 2022;34(7):950–985.
  • Sagiv D, Harari-Steinberg O, Wolf M, et al. The feasibility to isolate and expand tympanic membrane squamous epithelium stem cells from scarred perforation margins. Otol Neurotol. 2019;40(10):e1030–e1036. doi:10.1097/MAO.0000000000002367.
  • Santa Maria PL, Gottlieb P, Santa Maria C, et al. Functional outcomes of heparin-binding epidermal growth factor-like growth factor for regeneration of chronic tympanic membrane perforations in mice. Tissue Eng Part A. 2017;23(9–10):436–444. doi:10.1089/ten.TEA.2016.0395.
  • Santa Maria PL, Weierich K, Kim S, et al. Heparin binding epidermal growth factor like growth factor heals chronic tympanic membrane perforations with advantage over fibroblast growth factor 2 and epidermal growth factor in an animal model. Otol Neurotol. 2015;36(7):1279–1283. doi:10.1097/MAO.0000000000000795.
  • Kanemaru S-I, Umeda H, Kitani Y, et al. Regenerative treatment for tympanic membrane perforation. Otol Neurotol. 2011;32(8):1218–1223. doi:10.1097/MAO.0b013e31822e0e53.
  • Kanemaru S, Kanai R, Yoshida M, et al. Strategy for regeneration of chronic tympanic membrane perforation with cholesteatoma tumor or severe calcification. Otol Neurotol. 2018;39(10):1340–1341. doi:10.1097/MAO.0000000000002037.
  • Liew LJ, Wang AY, Dilley RJ. Isolation of epidermal progenitor cells from rat tympanic membrane. In: Joglekar M, Hardikar A, editors. Progenitor Cells. Methods in Molecular Biology, Vol. 2029. New York, NY: Humana. 2019. https://doi.org/10.1007/978-1-4939-9631-5_19.
  • Hott ME, Megerian CA, Beane R, et al. Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding. Laryngoscope. 2004;114(7):1290–1295. doi:10.1097/00005537-200407000-00028.
  • Ghassemifar, Reza, Redmond, Sharon, Chirila, Traian V, et al. Advancing towards a tissue-engineered tympanic membrane: silk fibroin as a substratum for growing human eardrum keratinocytes. J Biomater Appl, 2010;24:591–606. doi:10.1177/0885328209104289.
  • Levin B, Redmond SL, Rajkhowa R, et al. Utilising silk fibroin membranes as scaffolds for the growth of tympanic membrane keratinocytes, and application to myringoplasty surgery. J Laryngol Otol. 2013;127 (S1):S13–S20. doi:10.1017/S0022215112001661.
  • Altuntaş EE, Sümer Z. Biocompatibility evaluation of cigarette and carbon papers used in repair of traumatic tympanic membrane perforations: experimental study. Eur Arch Otorhinolaryngol. 2013;270(1):81–86. doi:10.1007/s00405-012-1934-6.
  • Mota C, Danti S, D’Alessandro D, et al. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering. Biofabrication. 2015;7(2):025005. doi:10.1088/1758-5090/7/2/025005.
  • Danti S, Mota C, D’alessandro D, et al. Tissue engineering of the tympanic membrane using electrospun PEOT/PBT copolymer scaffolds: a morphological in vitro study. Hear Balanc Commun. 2015;13(4):133–147. doi:10.3109/21695717.2015.1092372.
  • Kozin ED, Black NL, Cheng JT, et al. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res. 2016;340:191–203. doi:10.1016/j.heares.2016.03.005.
  • Lee MC, Seonwoo H, Garg P, et al. Chitosan/PEI patch releasing EGF and the EGFR gene for the regeneration of the tympanic membrane after perforation. Biomater Sci. 2018;6(2):364–371. doi:10.1039/c7bm01061c.
  • Li L, Zhang W, Huang M, et al. Preparation of gelatin/genipin nanofibrous membrane for tympanic member repair. J Biomater Sci Polym Ed. 2018;29(17):2154–2167. doi:10.1080/09205063.2018.1528519.
  • Seonwoo H, Kim SW, Shin B, et al. Latent stem cell-stimulating therapy for regeneration of chronic tympanic membrane perforations using IGFBP2-releasing chitosan patch scaffolds. J Biomater Appl. 2019;34(2):198–207. doi:10.1177/0885328219845082.
  • Wang B, Xin T, Shen L, et al. Acoustic transmitted electrospun fibrous membranes for tympanic membrane regeneration. Chem Eng J. 2021;419:129536.
  • Anand S, Azimi B, Lucena M, et al. Chitin nanofibrils modulate mechanical response in tympanic membrane replacements. Carbohydr Polym. 2023;310:120732. doi:10.1016/j.carbpol.2023.120732.
  • Hellström S, Laurent C. Hyaluronan and healing of tympanic membrane perforations. An experimental study. Acta Otolaryngol Suppl. 1987;442(sup442):54–61. doi:10.3109/00016488709102840.
  • Chauvin K, Bratton C, Parkins C. Healing large tympanic membrane perforations using hyaluronic acid, basic fibroblast growth factor, and epidermal growth factor. Otolaryngol Head Neck Surg. 1999;121(1):43–47. doi:10.1016/S0194-5998(99)70122-1.
  • McFeely WJ, Bojrab DI, Kartush JM. Tympanic membrane perforation repair using AlloDerm. Otolaryngol Head Neck Surg. 2000;123(1):17–21. doi:10.1067/mhn.2000.105920.
  • Laidlaw DW, Costantino PD, Govindaraj S, et al. Tympanic membrane repair with a dermal allograft. Laryngoscope. 2001;111(4):702–707. doi:10.1097/00005537-200104000-00025.
  • Downey TJ, Champeaux AL, Silva AB. AlloDerm tympanoplasty of tympanic membrane perforations. Am J Otolaryngol – Head Neck Med Surg. 2003;24:6–13.
  • Güneri EA, Tekin S, Yilmaz O, et al. The effects of hyaluronic acid, epidermal growth factor, and mitomycin in an experimental model of acute traumatic tympanic membrane perforation. Otol Neurotol. 2003;24(3):371–376. doi:10.1097/00129492-200305000-00004.
  • Konakçi E, Koyuncu M, Unal R, et al. Repair of subtotal tympanic membrane perforations with Seprafilm®. J Laryngol Otol. 2004;118(11):862–865. doi:10.1258/0022215042703723.
  • Spiegel JH, Kessler JL. Tympanic membrane perforation repair with acellular porcine submucosa. Otol Neurotol. 2005;26(4):563–566. doi:10.1097/01.mao.0000169636.63440.4e.
  • Ozturk K, Yaman H, Avunduk MC, et al. Effectiveness of MeroGel hyaluronic acid on tympanic membrane perforations. Acta Otolaryngol. 2006;126(11):1158–1163. doi:10.1080/00016480600678797.
  • Weber DE, Semaan MT, Wasman JK, et al. Tissue-engineered calcium alginate patches in the repair of chronic chinchilla tympanic membrane perforations. Laryngoscope. 2006;116(5):700–704. doi:10.1097/01.mlg.0000208549.44462.fa.
  • Johnson A, Mixson C, Munday J. Suitability of formaldehyde-treated acellular dermis for tympanic membrane repair in chinchillas. Otol Neurotol. 2007;28(6):778–781. doi:10.1097/MAO.0b013e318064e912.
  • Deng Z, Wu J, Qiu J, et al. Comparison of porcine acellular dermis and dura mater as natural scaffolds for bioengineering tympanic membranes. Tissue Eng Part A. 2009;15(12):3729–3739. doi:10.1089/ten.TEA.2008.0460.
  • Kim JH, Bae JH, Ki TL. Development of water-insoluble chitosan patch scaffold to repair traumatic tympanic membrane perforations. J Biomed Mater Res – Part A. 2009;90:446–455.
  • Parekh A, Mantle B, Banks J, et al. Repair of the tympanic membrane with urinary bladder matrix. Laryngoscope. 2009;119(6):1206–1213. doi:10.1002/lary.20233.
  • Ort SA, Ehrlich HP, Isaacson JE. Acellular porcine intestinal submucosa as fascial graft in an animal model: applications for revision tympanoplasty. Otolaryngol Head Neck Surg. 2010;143(3):435–440. doi:10.1016/j.otohns.2010.04.268.
  • Wieland AM, Sundback CA, Hart A, et al. Poly(glycerol sebacate)-engineered plugs to repair chronic tympanic membrane perforations in a chinchilla model. Otolaryngol Head Neck Surg. 2010;143(1):127–133. doi:10.1016/j.otohns.2010.01.025.
  • Kim J, Kim SW, Choi SJ, et al. A healing method of tympanic membrane perforations using three-dimensional porous chitosan scaffolds. Tissue Eng Part A. 2011;17(21-22):2763–2772. doi:10.1089/ten.TEA.2010.0533.
  • Lee OJ, Lee JM, Kim JH, et al. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J Biomed Mater Res A. 2012;100(8):2018–2026. A:2018–2026. doi:10.1002/jbm.a.33308.
  • Sundback CA, McFadden J, Hart A, et al. Behavior of poly(glycerol sebacate) plugs in chronic tympanic membrane perforations. J Biomed Mater Res B Appl Biomater. 2012;100(7):1943–1954. B:1943–1954. doi:10.1002/jbm.b.32761.
  • Jang CH, Cho YB, Yeo MG, et al. Regeneration of chronic tympanic membrane perforation using 3D collagen with topical umbilical cord serum. Int J Biol Macromol. 2013;62:232–240. doi:10.1016/j.ijbiomac.2013.08.049.
  • Shen Y, Redmond SL, Teh BM, et al. Scaffolds for tympanic membrane regeneration in rats. Tissue Eng Part A. 2013;19(5-6):657–668. doi:10.1089/ten.TEA.2012.0053.
  • Santa Maria PL. In response to: regeneration of chronic tympanic membrane perforation using an EGF-releasing chitosan patch. Tissue Eng Part A. 2013;19(19-20):2109–2110. doi:10.1089/ten.TEA.2013.0351.
  • Hakuba N, Tabata Y, Hato N, et al. Gelatin hydrogel with basic fibroblast growth factor for tympanic membrane regeneration. Otol Neurotol. 2014;35(3):540–544. doi:10.1097/MAO.0000000000000200.
  • Lee H, Jang CH, Kim GH. A polycaprolactone/silk-fibroin nanofibrous composite combined with human umbilical cord serum for subacute tympanic membrane perforation; an in vitro and in vivo study. J Mater Chem B. 2014;2(18):2703–2713. doi:10.1039/c4tb00213j.
  • Lou Z. In response to: comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs. paper patch. Wound Repair Regen. 2016;24(2):458–459. doi:10.1111/wrr.12406.
  • Goncalves S, Bas E, Goldstein BJ, et al. Effects of cell-based therapy for treating tympanic membrane perforations in mice. Otolaryngol Head Neck Surg. 2016;154(6):1106–1114. doi:10.1177/0194599816636845.
  • Zhengcai-Lou. In reference to tympanic membrane repair using silk fibroin and acellular collagen scaffolds. Laryngoscope, 2016;126:E421. doi:10.1002/lary.25936.
  • Jang CH, Ahn SH, Lee JW, et al. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation. Mater Sci Eng C Mater Biol Appl. 2017;72:456–463. doi:10.1016/j.msec.2016.11.094.
  • Kim SH, Jeong JY, Park HJ, et al. Application of a collagen patch derived from duck feet in acute tympanic membrane perforation. Tissue Eng Regen Med. 2017;14(3):233–241. doi:10.1007/s13770-017-0039-0.
  • Goncalves S, Bas E, Langston M, et al. Histologic changes of mesenchymal stem cell repair of tympanic membrane perforation. Acta Otolaryngol. 2017;137(4):411–416. doi:10.1080/00016489.2016.1261411.
  • Rubinstein BJ, Ranney JD, Khoshakhlagh P, et al. A novel gel patch for minimally invasive repair of tympanic membrane perforations. Int J Pediatr Otorhinolaryngol. 2018;115:27–32. doi:10.1016/j.ijporl.2018.09.012.
  • Kuo CY, Wilson E, Fuson A, et al. Repair of tympanic membrane perforations with customized bioprinted ear grafts using chinchilla models. Tissue Eng Part A. 2018;24(5–6):527–535. doi:10.1089/ten.TEA.2017.0246.
  • Seonwoo H, Shin B, Jang KJ, et al. Epidermal growth factor–releasing radially aligned electrospun nanofibrous patches for the regeneration of chronic tympanic membrane perforations. Adv Healthc Mater. 2019;8:1801160.
  • Cho GW, Moon C, Song A, et al. Effect of growth factor-loaded acellular dermal matrix/mscs on regeneration of chronic tympanic membrane perforations in rats. J Clin Med. 2021;10(7):1541. https://doi.org/10.3390/jcm10071541
  • Rathnakara SH, Raju SR, Kumar R, et al. Silk fibroin nanofiber scaffold (SFNS) as a graft material for myringoplasty- in vitro and in vivo. Materialia. 2022;26:101562. doi:10.1016/j.mtla.2022.101562.
  • Lu Y, Li J, Hou N, et al. Decellularized tympanic membrane scaffold with bone marrow mesenchymal stem cells for repairing tympanic membrane perforation. Artif Organs. 2023;47(1):62–76. doi:10.1111/aor.14399.
  • Stenfors LE. Treatment of tympanic membrane perforations with hyaluronan in an open pilot study of unselected patients. Acta Otolaryngol Suppl. 1987;442(sup442):81–87. doi:10.3109/00016488709102845.
  • Stenfors LE. Repair of tympanic membrane perforations using hyaluronic acid: an alternative to myringoplasty. J Laryngol Otol. 1989;103(1):39–40. doi:10.1017/s0022215100107984.
  • Camarda V, Cervellini M, Pedace G, et al. Sodium hyaluronate in the repair of perforations of the tympanic membrane. Clin Ther. 1989;11:744–754.
  • Rivas Lacarte MP, Casasin T, Pumarola F, et al. An alternative treatment for the reduction of tympanic membrane perforations: sodium hyaluronate: a double blind study. Acta Otolaryngol. 1990;110(1-2):110–114. doi:10.3109/00016489009122523.
  • Laurent C, Söderberg O, Anniko M, et al. Repair of chronic tympanic membrane perforations using applications of hyaluronan or rice paper prostheses. ORL J Otorhinolaryngol Relat Spec. 1991;53(1):37–40. doi:10.1159/000276182.
  • Kumar S, Gupta AK. Closure of persistent Central perforations of tympanic membrane using 1% hyaluronic acid. IJO & HNS. 1995;47(2):127–131. doi:10.1007/BF03047943.
  • Benecke J. Tympanic membrane grafting with AlloDerm. Laryngoscope. 2001;111(9):1525–1527. doi:10.1097/00005537-200109000-00007.
  • Golz A, Goldenberg D, Netzer A, et al. Paper patching for chronic tympanic membrane perforations. Otolaryngol Head Neck Surg. 2003;128(4):565–570. doi:10.1016/S0194-59980300124-4.
  • Vos JD, Latev MD, Labadie RF, et al. Use of AlloDerm in type I tympanoplasty: a comparison with native tissue grafts. Laryngoscope. 2005;115(9):1599–1602. doi:10.1097/01.mlg.0000172042.73024.ad.
  • Fishman AJ, Marrinan MS, Huang TC, et al. Total tympanic membrane reconstruction: AlloDerm versus temporalis fascia. Otolaryngol Head Neck Surg. 2005;132(6):906–915. doi:10.1016/j.otohns.2004.12.013.
  • Lai P, Propst EJ, Papsin BC. Lateral graft type 1 tympanoplasty using AlloDerm® for tympanic membrane reconstruction in children. Int J Pediatr Otorhinolaryngol. 2006;70(8):1423–1429. doi:10.1016/j.ijporl.2006.02.012.
  • Kaur K, Singh H, Singh M. Repair of tympanic membrane perforation by topical application of 1% sodium hyaluronate. Indian J Otolaryngol Head Neck Surg. 2006;58(3):241–244. doi:10.1007/BF03050829.
  • Kakehata S, Hirose Y, Kitani R, et al. Autologous serum eardrops therapy with a chitin membrane for closing tympanic membrane perforations. Otol Neurotol. 2008;29(6):791–795. doi:10.1097/MAO.0b013e31817f73af.
  • Raj A, Sayal A, Rathore PK, et al. Sutureless tympanoplasty using acellular dermis. Am J Otolaryngol – Head Neck Med Surg. 2011;32:96–99.
  • Lou Z, Xu L, Yang J, et al. Outcome of children with edge-everted traumatic tympanic membrane perforations following spontaneous healing versus fibroblast growth factor-containing gelfoam patching with or without edge repair. Int J Pediatr Otorhinolaryngol. 2011;75(10):1285–1288. doi:10.1016/j.ijporl.2011.07.012.
  • Farhadi M, Mirzadeh H, Solouk A, et al. Collagen-immobilized patch for repairing small tympanic membrane perforations: in vitro and in vivo assays. J Biomed Mater Res A. 2012;100(3):549–553. doi:10.1002/jbm.a.33293.
  • Shehata A, Mohamed S. Chitosan patch scaffold for repair of chronic safe tympanic membrane perforation. Egypt J Otolaryngol. 2014;30(4):311–316. doi:10.4103/1012-5574.144961.
  • Jun HJ, Oh KH, Yoo J, et al. A new patch material for tympanic membrane perforation by trauma: the membrane of a hen egg shell. Acta Otolaryngol. 2014;134(3):250–254. doi:10.3109/00016489.2013.857784.
  • Fairbairn NG, Randolph MA, Redmond RW. The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthet Surg. 2014;67(5):662–675. doi:10.1016/j.bjps.2014.01.031.
  • Lou ZC, Tang YM, Chen HY, et al. The perforation margin phenotypes and clinical outcome of traumatic tympanic membrane perforation with a Gelfoam patch: our experience from a retrospective study of seventy-four patients. Clin Otolaryngol. 2015;40(4):389–392. doi:10.1111/coa.12386.
  • Lee JH, Lee JS, Kim DK, et al. Clinical outcomes of silk patch in acute tympanic membrane perforation. Clin Exp Otorhinolaryngol. 2015;8(2):117–122. doi:10.3342/ceo.2015.8.2.117.
  • Silveira FCA, Pinto FCM, Caldas Neto S, et al. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial. Braz J Otorhinolaryngol. 2016;82(2):203–208. doi:10.1016/j.bjorl.2015.03.015.
  • Lee JH, Kim DK, Park HS, et al. A prospective cohort study of the silk fibroin patch in chronic tympanic membrane perforation. Laryngoscope. 2016;126(12):2798–2803. doi:10.1002/lary.25980.
  • Gün T, Boztepe OF, Atan D, et al. Comparison of hyaluronic acid fat graft myringoplasty, fat graft myringoplasty and temporal fascia techniques for the closure of different sizes and sites of tympanic membrane perforations. J Int Adv Otol. 2016;12(2):137–141. doi:10.5152/iao.2016.1938.
  • Saeedi M, Ajalloueian M, Zare E, et al. The effect of PRP-enriched gelfoam on chronic tympanic membrane perforation: a double-blind randomized clinical trial. Int Tinnitus J. 2017;21:108–111.
  • Omae K, Kanemaru S, Ichi Nakatani E, et al. Regenerative treatment for tympanic membrane perforation using gelatin sponge with basic fibroblast growth factor. Auris Nasus Larynx. 2017;44(6):664–671. doi:10.1016/j.anl.2016.12.005.
  • Jung JY, Yun HC, Kim TM, et al. Analysis of effect of eggshell membrane patching for moderate-to-large traumatic tympanic membrane perforation. J Audiol Otol. 2017;21(1):39–43. doi:10.7874/jao.2017.21.1.39.
  • Ciğer E, Balcı MK, İşlek A, et al. The wheel-shaped composite cartilage graft (WsCCG) and temporalis fascia for type 1 tympanoplasty: a prospective, randomized study. Eur Arch Otorhinolaryngol. 2018;275(12):2975–2981. doi:10.1007/s00405-018-5171-5.
  • Yawn RJ, Dedmon MM, O’Connell BP, et al. Tympanic membrane perforation repair using porcine small intestinal submucosal grafting. Otol Neurotol. 2018;39(5):e332–e335. doi:10.1097/MAO.0000000000001792.
  • Kanemaru S, Kanai R, Yoshida M, et al. Application of regenerative treatment for tympanic membrane perforation with cholesteatoma, tumor, or severe calcification. Otol Neurotol. 2018;39(4):438–444. doi:10.1097/MAO.0000000000001701.
  • Am de Mr P, Kencis CCS, Miranda DRP, et al. Traumatic perforations of the tympanic membrane: immediate clinical recovery with the use of bacterial cellulose film. Braz J Otorhinolaryngol. 2020;86:727–733.
  • Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn. 2020;249(12):1410–1424. doi:10.1002/dvdy.260.
  • Yamamoto K, Yamato M, Morino T, et al. Middle ear mucosal regeneration by tissue-engineered cell sheet transplantation. npj Regen Med. 2017;2:6.
  • Lu XX, Li XX, Zhao DH, et al. Study on preparation of 3D printing degradable tissue engineering ossicles. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020;55:764–768.
  • D’Alessandro D, Danti S, De Vito A, et al. Histologic characterization of human ear ossicles for the development of tissue-engineered replacements. Otol Neurotol. 2012;33(8):1458–1468. doi:10.1097/MAO.0b013e31826a527d.
  • Akiyama N, Yamamoto-Fukuda T, Takahashi H, et al. In situ tissue engineering with synthetic self-assembling peptide nanofiber scaffolds, PuraMatrix, for mucosal regeneration in the rat Middle-ear. Int J Nanomedicine. 2013;8:2629–2640.
  • Tang PC, Hashino E, Nelson RF. Progress in modeling and targeting inner ear disorders with pluripotent stem cells. Stem Cell Rep. 2020;14(6):996–1008. doi:10.1016/j.stemcr.2020.04.008.
  • Géléoc GSG, Holt JR. Sound strategies for hearing restoration. Science. 2014;344(6184):1241062. doi:10.1126/science.1241062.
  • Sharma A, Munjal S, Panda N, et al. Demographic variations in tinnitus subjects with and without hearing loss: a study of 175 subjects. Int Tinnitus J. 2018;22:77–83.
  • Eshraghi AA, Jung HD, Mittal R. Recent advancements in gene and stem cell-based treatment modalities: Potential implications in Noise-Induced hearing loss. Anat Rec (Hoboken). 2020;303(3):516–526. doi:10.1002/ar.24107.
  • Mellott AJ, Shinogle HE, Nelson-Brantley JG, et al. Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res Ther. 2017;8:41.
  • Neal CA, Nelson-Brantley JG, Detamore MS, et al. A protocol for decellularizing mouse cochleae for inner ear tissue engineering. J Vis Exp. 2018;2018:e56523.
  • Danti S, Azimi B, Candito M, et al. Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases. 2020;15(3):031004. doi:10.1116/6.0000067.
  • Ding X, Hu Y, Cheng H, et al. Graphene substrates promote the differentiation of inner ear Lgr5+ progenitor cells into hair cells. Front Bioeng Biotechnol. 2022;10:927248. doi:10.3389/fbioe.2022.927248.
  • Li G, Yin Y, Zhang Y, et al. Electrospun regenerated silk fibroin is a promising biomaterial for the maintenance of inner ear progenitors in vitro. J Biomater Appl. 2022;36(7):1164–1172. doi:10.1177/08853282211051501.
  • Liang W, Chen X, Dong Y, et al. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. Int J Polym Mater Polym Biomater. 2022;71(6):425–443. doi:10.1080/00914037.2020.1848832.
  • Chandra PK, Soker S, Atala A. Tissue engineering: current status and future perspectives. Principles of Tissue Engineering 2020; p. 1–35.
  • Heikkinen AK, Lähde S, Rissanen V, et al. Feasibility of 3D-printed middle ear prostheses in partial ossicular chain reconstruction. Int J Bioprinting. 2023;9:174–185.
  • Niermeyer WL, Rodman C, Li MM, et al. Tissue engineering applications in otolaryngology—the state of translation. Laryngoscope Investig Otolaryngol. 2020;5(4):630–648. doi:10.1002/lio2.416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.