1,034
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Intelligent structural health monitoring of composite structures using machine learning, deep learning, and transfer learning: a review

, , &
Pages 162-188 | Received 18 Apr 2023, Accepted 15 May 2023, Published online: 18 May 2023

References

  • Hudda A, Singh S, Tiwari S, et al. Unravelling the role of nanofillers towards the stability of polymer matrix composite in marine environment. Adv Compos Mater. 2023;32(2):268–282. DOI:10.1080/09243046.2022.2084214
  • Kurihara Y. Polymer matrix composite materials in automobile industries. Adv Compos Mater. 1995;4(3):209–219.
  • Muhammad A, Rahman MR, Baini R, et al. Applications of sustainable polymer composites in automobile and aerospace industry. In: Rahman Meditor. Advances in sustainable polymer composites. Internet: Woodhead Publishing; 2021. pp. 185–207.
  • Mishnaevsky L. Composite materials for wind energy applications: micromechanical modeling and future directions. Computational Mechanics. 2012;50(2):195–207.
  • Ejaz M, Azad MM, Shah AUR, et al. Mechanical and Biodegradable Properties of Jute/Flax Reinforced PLA Composites. Fibers Polym. 2020;21(11):2635–2641. DOI:10.1007/s12221-020-1370-y
  • Kubota M, Hayakawa K, Todoroki A. Effect of build-up orientations and process parameters on the tensile strength of 3D printed short carbon fiber/PA-6 composites. Adv Compos Mater. 2022;31(2):119–136.
  • Terada M, Yamabe R, Ichiki M, et al. Estimation of fiber orientation distribution in carbon-fiber-reinforced polyamide 6 using X-ray diffraction images. Adv Compos Mater. 2022;1–16.
  • Bhatia S, Angra S, Khan S. A review on mechanical and tribological characterization of boron carbide reinforced epoxy composite. Adv Compos Mater. 2021;30(4):307–337.
  • Azad MM, Ejaz M, Shah AUR, et al. Static mechanical properties of bio-fiber-based polymer composites. In: Rangappa S, Puttegowda M, Parameswaranpillai J, Siengchin S Gorbatyuk Seditors. Advances in Bio-Based Fiber. Internet: Woodhead Publishing; 2022. pp. 97–139.
  • Ejaz M, Azad MM, Ur R SA, et al. Synergistic effect of aluminum trihydrate and zirconium hydroxide nanoparticles on mechanical properties, flammability, and thermal degradation of polyester/jute fiber composite. Cellul. 2022;29(3):1775–1790. DOI:10.1007/s10570-022-04417-9
  • Woo K, Nega BF, Cairns DS, et al. Three-dimensional failure behaviour of L-shaped laminated composite with wrinkles and defects. Adv Compos Mater. 2023;32(3):368–399. DOI:10.1080/09243046.2022.2096720
  • Khan A, Raouf I, Noh YR, et al. Autonomous assessment of delamination in laminated composites using deep learning and data augmentation. Compos Struct. 2022;290:115502.
  • Khan A, Kim HS. A brief overview of delamination localization in laminated composites. Multiscale Sci Eng. 2022;4(3):102–110.
  • Khan A, Kim HS. Assessment of sensor debonding failure in system identification of smart composite laminates. NDT E Int. 2018;93:24–33.
  • Fotouhi S, Pashmforoush F, Bodaghi M, et al. Autonomous damage recognition in visual inspection of laminated composite structures using deep learning. Compos Struct. 2021;268:113960.
  • Ryuzono K, Yashiro S, Onodera S, et al. Lamb wave mode conversion and multiple-reflection mechanisms for simply and reliably evaluating delamination in composite laminates. Adv Compos Mater. 2022;1–18.
  • Jang B-W, Kim C-G. Acoustic emission source localization in composite stiffened plate using triangulation method with signal magnitudes and arrival times. Adv Compos Mater. 2021;30(2):149–163.
  • Ishikawa M, Miura T, Nishino H, et al. Active thermography inspection of CFRP using cyclic heating and Fourier transform—comparison with flash heating method. Adv Compos Mater. 2022;1–13.
  • Voß M, Szewieczek A, Hillger W, et al. The contribution of numerical models to Lamb-wave-driven NDT processes – part II: experimental design and numerical studies. Adv Compos Mater. 2023;1–31.
  • Kim HS, Ghoshal A, Chattopadhyay A, et al. Development of embedded sensor models in composite laminates for structural health monitoring. J Reinf Plast Compos. 2004;23(11):1207–1240. DOI:10.1177/0731684404039703
  • Rocha H, Semprimoschnig C, Nunes JP. Sensors for process and structural health monitoring of aerospace composites: a review. Eng Struct. 2021;237:112231.
  • Mishra M, Lourenço PB, Ramana GV. Structural health monitoring of civil engineering structures by using the internet of things: a review. J Build Eng. 2022;48:103954.
  • Raouf I, Lee H, Noh YR, et al. Prognostic health management of the robotic strain wave gear reducer based on variable speed of operation: a data-driven via deep learning approach. J Comput Des Eng. 2022;9(5):1775–1788. DOI:10.1093/jcde/qwac091
  • Raouf I, Lee H, Kim HS. Mechanical fault detection based on machine learning for robotic RV reducer using electrical current signature analysis: a data-driven approach. J Comput Des Eng. 2022;9(2):417–433.
  • Civera M, Surace C. Non-destructive techniques for the condition and structural health monitoring of wind turbines: a literature review of the last 20 years. Sensors. 2022;22(4):1627.
  • Yari T, Nagai K, Takeda N. Aircraft structural-health monitoring using optical fiber distributed BOTDR sensors. Adv Compos Mater. 2004;13(1):17–26.
  • Mitschang P, Molnár P, Ogale A, et al. Cost-effective structural health monitoring of FRPC parts for automotive applications. Adv Compos Mater. 2007;16(2):135–149. DOI:10.1163/156855107780918991
  • Ricci F, Monaco E, Boffa ND, et al. Guided waves for structural health monitoring in composites: a review and implementation strategies. Prog Aerosp Sci. 2022;129:100790.
  • Saeedifar M, Zarouchas D. Damage characterization of laminated composites using acoustic emission: a review. Compos Part B Eng. 2020;195:108039.
  • Gorgin R, Luo Y, Wu Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: a review. Ultrasonics. 2020;105:106114.
  • Khan A, Kim N, Shin JK, et al. Damage assessment of smart composite structures via machine learning: a review. JMST Adv. 2019;1(1–2):107–124. DOI:10.1007/s42791-019-0012-2
  • Qing X, Liao Y, Wang Y, et al. Machine Learning Based Quantitative Damage Monitoring of Composite Structure. Int J Smart Nano Mater. 2022;13(2):167–202. DOI:10.1080/19475411.2022.2054878
  • Toh G, Park J. Review of vibration-based structural health monitoring using deep learning. Appl Sci. 2020;10(5):1680.
  • Khan A, Azad MM, Sohail M, et al. A review of physics-based models in prognostics and health management of laminated composite structures. Int J Precis Eng Manuf Technol. 2023;1–21.
  • Kulhan T, Kamboj A, Gupta NK, et al. Fabrication methods of glass fibre composites—a review. Funct Compos Struct. 2022;4(2):022001. DOI:10.1088/2631-6331/ac6411
  • Nagavally RR. Composite materials - history, types, fabrication techniques, advantages, and applications. Int J Curr Res. 2016;8(09):37763–37768.
  • Varvani-Farahani A. Composite materials: characterization, fabrication and application-research challenges and directions. Appl Compos Mater. 2010;17(2):63–67.
  • Okamura K. Ceramic matrix composites (CMC). Adv Compos Mater. 1995;4(3):247–259.
  • Netravali AN, Huang X, Mizuta K. Advanced “green” composites. Adv Compos Mater. 2007;16(4):269–282.
  • Kojima A, Furukawa S. Recycling of resin matrix composite materials VII: future perspective of FRP recycling. Adv Compos Mater. 1997;6(3):215–225.
  • Azad MM, Ejaz M, Shah AUR, et al. A bio-based approach to simultaneously improve flame retardancy, thermal stability and mechanical properties of nano-silica filled jute/thermoplastic starch composite. Mater Chem Phys. 2022;289(5):126485. DOI:10.1016/j.matchemphys.2022.126485
  • Vidakis N, Petousis M, Velidakis E, et al. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Adv Compos Mater. 2022;31(6):630–654. DOI:10.1080/09243046.2022.2076019
  • Kee J, Kim D, Kim H, et al. Enhanced thermal conductivity of polyamide nanocomposites involving expanded graphite–carbon nanotube network structure using supercritical CO 2. Adv Compos Mater. 2023;1–11.
  • Khalid S, Kim HS. Recent studies on stress function-based approaches for the free edge stress analysis of smart composite laminates: a brief review. Multiscale Sci Eng. 2022;4(3):73–78.
  • Murayama H, Kageyama K, Kamita T, et al. Structural health monitoring of a full-scale composite structure with fiber-optic sensors. Adv Compos Mater. 2002;11(3):287–297. DOI:10.1163/156855102762506326
  • Kojima Y, Hirayama K, Endo K, et al. Inverse estimation method for internal defects based on surface stress of carbon-fiber-reinforced plastics using machine learning. Adv Compos Mater. 2022;31(6):617–629. DOI:10.1080/09243046.2022.2052786
  • Park CY, Kim JH, Jun S-M, et al. Localizations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensors. Adv Compos Mater. 2012;21(5–6):357–369. DOI:10.1080/09243046.2012.736346
  • Khalid S, Lim W, Kim HS, et al. Intelligent steam power plant boiler waterwall tube leakage detection via machine learning-based optimal sensor selection. Sensors. 2020;20(21):6356. DOI:10.3390/s20216356
  • An H, Youn BD, Kim HS. Optimal placement of non-redundant sensors for structural health monitoring under model uncertainty and measurement noise. Measurement. 2022;204:112102.
  • Sohn JW, Choi S-B, Kim HS. Vibration control of smart hull structure with optimally placed piezoelectric composite actuators. Int J Mech Sci. 2011;53(8):647–659.
  • Hwang H, Song J, Kim HS, et al. Real-time fatigue crack prediction using self-sensing buckypaper and gated recurrent unit. J Mech Sci Technol. 2023;37(3):1401–1409. DOI:10.1007/s12206-023-0226-y
  • Sun S, Wang T, Chu F. In-situ condition monitoring of wind turbine blades: a critical and systematic review of techniques, challenges, and futures. Renewable Sustainable Energy Rev. 2022;160:112326.
  • Wang B, Zhong S, Lee T-L, et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review. Adv Mech Eng. 2020;12(4):168781402091376. DOI:10.1177/1687814020913761
  • Staszewski WJ, Boller C, Tomlinson GR. Health monitoring of aerospace structures: smart sensor technologies and signal processing. Internet: Wiley; 2003.
  • Khalid S, Hwang H, Kim HS. Real-world data-driven machine-learning-based optimal sensor selection approach for equipment fault detection in a thermal power plant. Mathematics. 2021;9(21):2814.
  • Fu X, Luo H, Zhong S, et al. Aircraft engine fault detection based on grouped convolutional denoising autoencoders. Chin J Aeronaut. 2019;32(2):296–307. DOI:10.1016/j.cja.2018.12.011
  • Wu J, Xu X, Liu C, et al. Lamb wave-based damage detection of composite structures using deep convolutional neural network and continuous wavelet transform. Compos Struct. 2021;276:114590.
  • Khan A, Ko D-K, Lim SC, et al. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos Part B Eng. 2019;161:586–594.
  • Silva KM, Souza BA, Brito NSD. Fault detection and classification in transmission lines based on wavelet transform and ANN. IEEE Trans Power Deliv. 2006;21(4):2058–2063.
  • Youssef A, Delpha C, Diallo D. An optimal fault detection threshold for early detection using kullback–leibler divergence for unknown distribution data. Signal Process. 2016;120:266–279.
  • Liu Y, Wu Z, Wang X. Research on fault diagnosis of wind turbine based on SCADA data. IEEE Access. 2020;8:185557–185569.
  • Cherkassky V, Mulier FM. Learning from data: concepts, theory, and methods. 2nd ed. New Jersey, USA: Wiley-IEEE Press; 2007.
  • Worden K, Farrar CR, Manson G, et al. The fundamental axioms of structural health monitoring. Proc R Soc A Math Phys Eng Sci. 2007;463(2082):1639–1664. DOI:10.1098/rspa.2007.1834
  • Güemes A, Fernandez-Lopez A, Fernandez P. Damage detection in composite structures from fibre optic distributed strain measurements. In EWSHM-7th European Workshop on Structural Health Monitoring. 2014 July 8-11. Nantes, France:La CitéHAL Open Science;2014. pp. 527–535.
  • Loutas TH, Panopoulou A, Roulias D, et al. Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements. Expert Syst Appl. 2012;39(9):8412–8422. DOI:10.1016/j.eswa.2012.01.179
  • Yeager M, Whittaker A, Todd M, et al. Impact detection and characterization in composite laminates with embedded fiber Bragg gratings. Procedia Eng. 2017;188:156–162.
  • Ni Q-Q, Iwamoto M. Wavelet transform of acoustic emission signals in failure of model composites. Eng Fract Mech. 2002;69(6):717–728.
  • Giordano M, Calabro A, Esposito C, et al. An acoustic-emission characterization of the failure modes in polymer-composite materials. Compos Sci Technol. 1998;58(12):1923–1928. DOI:10.1016/S0266-3538(98)00013-X
  • Bussiba A, Kupiec M, Ifergane S, et al. Damage evolution and fracture events sequence in various composites by acoustic emission technique. Compos Sci Technol. 2007;68(8):1144–1155. DOI:10.1016/j.compscitech.2007.08.032
  • Ben BS, Ben BA, Vikram KA, et al. Damage identification in composite materials using ultrasonic based Lamb wave method. Measurement. 2013;46(2):904–912. DOI:10.1016/j.measurement.2012.10.011
  • Kessler SS, Spearing SM, Soutis C. Damage detection in composite materials using Lamb wave methods. Smart Mater Struct. 2002;11(2):269–278.
  • Zoubi AB, Kim S, Adams DO, et al. Lamb wave mode decomposition based on cross-Wigner-ville distribution and its application to anomaly imaging for structural health monitoring. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66(5):984–997. DOI:10.1109/TUFFC.2019.2903006
  • Pierce SG. Wavelet signal processing for enhanced Lamb-wave defect detection in composite plates using optical fiber detection. Opt Eng. 1997;36(7):1877.
  • Ng CT, Veidt M. A Lamb-wave-based technique for damage detection in composite laminates. Smart Mater Struct. 2009;18(7):074006.
  • Khan A, Khalid S, Raouf I, et al. Autonomous assessment of delamination using scarce raw structural vibration and transfer learning. Sensors. 2021;21(18):6239. DOI:10.3390/s21186239
  • Bayissa WL, Haritos N, Thelandersson S. Vibration-based structural damage identification using wavelet transform. Mech Syst Signal Process. 2008;22(5):1194–1215.
  • An H, Youn BD, Kim HS. A methodology for sensor number and placement optimization for vibration-based damage detection of composite structures under model uncertainty. Compos Struct. 2022;279:114863.
  • Reis PA, Iwasaki KMK, Voltz LR, et al. Damage detection of composite beams using vibration response and artificial neural networks. Proc Inst Mech Eng Part L J Mater Des Appl. 2022;236(7):1419–1430. DOI:10.1177/14644207211041326
  • Samir K, Brahim B, Capozucca R, et al. Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis functions and cuckoo search algorithm. Compos Struct. 2018;187:344–353.
  • Khan A, Kim HS. Classification and prediction of multidamages in smart composite laminates using discriminant analysis. Mech Adv Mater Struct. 2022;29(2):230–240.
  • Wei J, Wang F, Liu J, et al. A laser arrays scan thermography (LAsST) for the rapid inspection of CFRP composite with subsurface defects. Compos Struct. 2019;226:111201.
  • Munoz V, Valès B, Perrin M, et al. Damage detection in CFRP by coupling acoustic emission and infrared thermography. Compos Part B Eng. 2016;85:68–75.
  • Chrysafi AP, Athanasopoulos N, Siakavellas NJ. Damage detection on composite materials with active thermography and digital image processing. Int J Therm Sci. 2017;116:242–253.
  • Li Y, Yang Z, Zhu J, et al. Investigation on the damage evolution in the impacted composite material based on active infrared thermography. NDT E Int. 2016;83:114–122.
  • Kotsiantis SB. Decision trees: a recent overview. Artif Intell Rev. 2013;39(4):261–283.
  • Liu P, Xu D, Li J, et al. Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning. Struct Heal Monit. 2020;19(4):1092–1103. DOI:10.1177/1475921719878259
  • Vamsi I, Hemanth MP, Kumar Penumakala P, et al. Damage monitoring of pultruded GFRP composites using wavelet transform of vibration signals. Measurement. 2022;195:111177.
  • Jakkamputi L, Devaraj S, Marikkannan S, et al. Experimental and computational vibration analysis for diagnosing the defects in high performance composite structures using machine learning approach. Appl Sci. 2022;12(23):12100. DOI:10.3390/app122312100
  • Wang L, editor. Support vector machines: theory and applications. Berlin, Heidelberg: Springer; 2005.
  • Das S, Chattopadhyay A, Srivastava AN. Classifying induced damage in composite plates using one-class support vector machines. Aiaa J. 2010;48(4):705–718.
  • Rautela M, Senthilnath J, Monaco E, et al. Delamination prediction in composite panels using unsupervised-feature learning methods with wavelet-enhanced guided wave representations. Compos Struct. 2022;291:115579.
  • Tang L, Li Y, Bao Q, et al. Quantitative identification of damage in composite structures using sparse sensor arrays and multi-domain-feature fusion of guided waves. Measurement. 2023;208:112482.
  • Viotti ID, Gomes GF. Delamination identification in sandwich composite structures using machine learning techniques. Comput Struct. 2023;280:106990.
  • Niño-Adan I, Landa-Torres I, Portillo E, et al. Influence of statistical feature normalisation methods on K-Nearest Neighbours and K-Means in the context of industry 4.0. Eng Appl Artif Intell. 2022;111:104807.
  • Pashmforoush F, Khamedi R, Fotouhi M, et al. Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm. J Nondestruct Eval. 2014;33(4):481–492. DOI:10.1007/s10921-014-0243-y
  • Hamdi K, Moreau G, Aboura Z. Digital image correlation, acoustic emission and in-situ microscopy in order to understand composite compression damage behavior. Compos Struct. 2021;258:113424.
  • Diaz-Escobar J, Díaz-Montiel P, Venkataraman S, et al. Classification and characterization of damage in composite laminates using electrical resistance tomography and supervised machine learning. Struct Control Heal Monit. 2023;2023:1–19.
  • Allagui S, El Mahi A, Rebiere J-L, et al. In-situ health monitoring of thermoplastic bio-composites using acoustic emission. J Thermoplast Compos Mater. 2023;089270572311545.
  • Mach Learn BLRF. Mach Learn. 2001;45:5–32.
  • Ai L, Soltangharaei V, Bayat M, et al. Detection of impact on aircraft composite structure using machine learning techniques. Meas Sci Technol. 2021;32(8):084013. DOI:10.1088/1361-6501/abe790
  • Sarr CAT, Chataigner S, Gaillet L, et al. Nondestructive evaluation of FRP-reinforced structures bonded joints using acousto-ultrasonic: towards diagnostic of damage state. Constr Build Mater. 2021;313:125499.
  • Khan A, Kim HS. Assessment of delaminated smart composite laminates via system identification and supervised learning. Compos Struct. 2018;206:354–362.
  • Lee H, Raouf I, Song J, et al. Prognostics and health management of the robotic servo-motor under variable operating conditions. Mathematics. 2023;11(2):398. DOI:10.3390/math11020398
  • Huang B, Koh B-H, Kim HS. PCA-based damage classification of delaminated smart composite structures using improved layerwise theory. Comput Struct. 2014;141:26–35.
  • Zhao G, Zhang L, Tang C, et al. Clustering of AE signals collected during torsional tests of 3D braiding composite shafts using PCA and FCM. Compos Part B Eng. 2019;161:547–554.
  • Hao W, Huang Z, Xu Y, et al. Acoustic emission characterization of tensile damage in 3D braiding composite shafts. Polym Test. 2020;81:106176.
  • Galanopoulos G, Milanoski D, Broer A, et al. Health monitoring of aerospace structures utilizing novel health indicators extracted from complex strain and acoustic emission data. Sensors. 2021;21(17):5701. DOI:10.3390/s21175701
  • Yoon J, Lee J, Kim G, et al. Deep neural network-based structural health monitoring technique for real-time crack detection and localization using strain gauge sensors. Sci Rep. 2022;12(1):20204. DOI:10.1038/s41598-022-24269-4
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.
  • Yam LH, Yan YJ, Jiang JS. Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Compos Struct. 2003;60(4):403–412.
  • Califano A, Chandarana N, Grassia L, et al. Damage detection in composites by artificial neural networks trained by using in situ distributed strains. Appl Compos Mater. 2020;27(5):657–671. DOI:10.1007/s10443-020-09829-z
  • Saadatmorad M, Jafari-Talookolaei R-A, Pashaei M-H, et al. Damage detection in rectangular laminated composite plate structures using a combination of wavelet transforms and artificial neural networks. J Vib Eng Technol. 2022;10(5):1647–1664. DOI:10.1007/s42417-022-00471-6
  • Irfan Shirazi M, Khatir S, Benaissa B, et al. Damage assessment in laminated composite plates using modal Strain Energy and YUKI-ANN algorithm. Compos Struct. 2023;303:116272.
  • Tran-Ngoc H, Khatir S, Ho-Khac H, et al. Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures. Compos Struct. 2021;262:113339.
  • Zara A, Belaidi I, Khatir S, et al. Damage detection in GFRP composite structures by improved artificial neural network using new optimization techniques. Compos Struct. 2023;305:116475.
  • Wang M-H, Lu S-D, Hsieh C-C, et al. Fault detection of wind turbine blades using multi-channel CNN. Sustainability. 2022;14(3):1781. DOI:10.3390/su14031781
  • Rautela M, Gopalakrishnan S. Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks. Expert Syst Appl. 2021;167:114189.
  • Modarres C, Astorga N, Droguett EL, et al. Convolutional neural networks for automated damage recognition and damage type identification. Struct Control Heal Monit. 2018;25(10):e2230. DOI:10.1002/stc.2230
  • Sikdar S, Liu D, Kundu A. Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel. Compos Part B Eng. 2022;228:109450.
  • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–507.
  • Potočnik P, Misson M, Šturm R, et al. Deep feature extraction based on AE signals for the characterization of loaded carbon fiber epoxy and glass fiber epoxy composites. Appl Sci. 2022;12(4):1867. DOI:10.3390/app12041867
  • Lee H, Lim HJ, Skinner T, et al. Automated fatigue damage detection and classification technique for composite structures using Lamb waves and deep autoencoder. Mech Syst Signal Process. 2022;163:108148.
  • Park S, Song J, Kim HS, et al. Non-contact detection of delamination in composite laminates coated with a mechanoluminescent sensor using convolutional AutoEncoder. Mathematics. 2022;10(22):4254. DOI:10.3390/math10224254
  • Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data. 2016;3(1):9.
  • Raouf I, Kumar P, Lee H, et al. Transfer learning-based intelligent fault detection approach for the industrial robotic system. Mathematics. 2023;11(4):945. DOI:10.3390/math11040945
  • Kumar P, Kumar P, Hati AS, et al. Deep transfer learning framework for bearing fault detection in motors. Mathematics. 2022;10(24):4683. DOI:10.3390/math10244683
  • Khan A, Kim J-S, Kim HS. Damage detection and isolation from limited experimental data using simple simulations and knowledge transfer. Mathematics. 2021;10(1):80.
  • Dorafshan S, Thomas RJ, Coopmans C, et al. Deep learning neural networks for suas-assisted structural inspections: feasibility and application. International Conference on Unmanned Aircraft Systems (ICUAS); 2018 June 12–15–882. Dallas, TX, USA: IEEE; 2018. p. 874–882.
  • Zhao X, Li S, Su H, et al. Image-based comprehensive maintenance and inspection method for bridges using deep learning. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS); 2018 September 10-12. San Antonio, Texas, USA: ASME; 2018. p. 1–7.
  • Wang N, Zhao Q, Li S, et al. Damage classification for masonry historic structures using convolutional neural networks based on still images. Comput Civ Infrastruct Eng. 2018;33(12):1073–1089. DOI:10.1111/mice.12411
  • Dorafshan S, Thomas RJ, Maguire M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr Build Mater. 2018;186:1031–1045.
  • Liang X. Image‐based post‐disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Comput Civ Infrastruct Eng. 2019;34(5):415–430.
  • Yoon S, (Song-Kyoo) Kim A, Cantwell WJ, et al. Defect detection in composites by deep learning using solitary waves. Int J Mech Sci. 2023;239:107882.
  • Gopalakrishnan K, Gholami H, Vidyadharan A, et al. Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model. Int J Traffic Transp Eng. 2018;8(1):1–14.
  • Yeum CM, Choi J, Dyke SJ. Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure. Struct Heal Monit. 2019;18(3):675–689.
  • Chaupal P, Rohit S, Rajendran P. Matrix cracking and delamination detection in GFRP laminates using pre-trained CNN models. J Brazilian Soc Mech Sci Eng. 2023;45(3):136.
  • Luo Q, Gao B, Woo WL, et al. Temporal and spatial deep learning network for infrared thermal defect detection. NDT E Int. 2019;108:102164.
  • Zhou Q, Chen Z, Xu J. Autonomous damage recognition of C/SiC composite based on transfer learning. Mater Express. 2022;12(2):327–336.
  • Liao W, Chen X, Lu X, et al. Deep transfer learning and time-frequency characteristics-based identification method for structural seismic response. Front Built Environ. 2021;7:1–14.
  • Feng C, Zhang H, Wang S, et al. Structural damage detection using deep convolutional neural network and transfer learning. KSCE J Civ Eng. 2019;23(10):4493–4502. DOI:10.1007/s12205-019-0437-z
  • Bang H-T, Park S, Jeon H. Defect identification in composite materials via thermography and deep learning techniques. Compos Struct. 2020;246:112405.
  • Hua C, Chen S, Xu G, et al. Defect identification method of carbon fiber sucker rod based on GoogLeNet-based deep learning model and transfer learning. Mater Today Commun. 2022;33:104228.
  • Wang Y, Luo Q, Xie H, et al. Digital image correlation (DIC) based damage detection for CFRP laminates by using machine learning based image semantic segmentation. Int J Mech Sci. 2022;230:107529.
  • Ma AM, Yu BJ, Fan CW, et al. Damage detection of carbon fiber reinforced polymer composite materials based on one-dimensional multi-scale residual convolution neural network. Rev Sci Instrum. 2022;93(3):034701. DOI:10.1063/5.0076826
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014.
  • Zhao J, Xie W, Yu D, et al. Deep transfer learning approach for localization of damage area in composite laminates using acoustic emission signal. Polymers. 2023;15(6):1520. DOI:10.3390/polym15061520
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 June 27-30. Las Vegas, NV, USA: IEEE; 2016. p. 770–778.
  • Rai A, Mitra M. A transfer learning approach for damage diagnosis in composite laminated plate using Lamb waves. Smart Mater Struct. 2022;31(6):065002.
  • Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 June 27-30. Las Vegas, NV, USA: IEEE; 2016. p. 2818–2826.
  • Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 June 7-12. Boston, MA, USA: IEEE; 2015. p. 1–9.
  • Saeed N, King N, Said Z, et al. Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning. Infrared Phys Technol. 2019;102:103048.
  • Zhang B, Hong X, Liu Y. Multi-task deep transfer learning method for guided wave-based integrated health monitoring using piezoelectric transducers. IEEE Sens J. 2020;20(23):14391–14400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.