358
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Prediction of the buckling mode of cylindrical composite shells with imperfections using FEM-based deep learning approach

, & ORCID Icon
Pages 189-211 | Received 14 Apr 2023, Accepted 07 Jun 2023, Published online: 20 Jun 2023

References

  • Eyvazian A, Habibi MK, Hamouda AM, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes. Mater Des. 2014;54:1028–1038. DOI:10.1016/j.matdes.2013.09.031
  • Arbocz J, Babcock CD Jr , “Experimental investigation of the effect of general imperfections on the buckling of cylindrical shells”, 1968.
  • Wagner HNR, Hühne C, Janssen M. Buckling of cylindrical shells under axial compression with loading imperfections: an experimental and numerical campaign on low knockdown factors. Thin-Walled Struct. 2020;151:106764. doi: 10.1016/j.tws.2020.106764
  • Wang B, Du K, Hao P, et al. Experimental validation of cylindrical shells under axial compression for improved knockdown factors. Int J Solids Struct. 2019;164:37–51. DOI:10.1016/j.ijsolstr.2019.01.001
  • Mekonnen AA, Woo K, Kang M, et al. 2020. Effects of Size and Location of Initial Delamination on Post-buckling and Delamination Propagation Behavior of Laminated Composites. Int. J. Aeronaut. Space Sci. 21(1):80–94. doi:10.1007/s42405-019-00195-0.
  • Lyssakow P, Friedrich L, Krause M, et al. Contactless geometric and thickness imperfection measurement system for thin-walled structures. Meas J Int Meas Confed. 2020;150:107038. DOI:10.1016/j.measurement.2019.107038
  • NASA, “NASA SP-8007 bucking of thin walled circular cylinders”, p 60, 1968.
  • Takano A. Statistical knockdown factors of buckling anisotropic cylinders under axial compression. J Appl Mech. 2012;79(5). DOI:10.1115/1.4006450
  • Wagner HNR, Hühne C, Niemann S. Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells–development and validation. Compos Struct. 2017;173:281–303. doi: 10.1016/j.compstruct.2017.02.031
  • Sim C, Kim D, Park J, et al. Derivation of Buckling Knockdown Factors for Pressurized Orthogrid-Stiffened Cylinders of Launch Vehicle Structures. Int. J. Aeronaut. Space Sci. 2023. doi:10.1007/s42405-023-00621-4
  • Xin R, Le VT, Goo NS. Buckling identification in composite cylindrical shells with measured imperfections using a multi-dIC method and finite element analysis. Thin-Walled Struct. 2022;177:109436. doi: 10.1016/j.tws.2022.109436
  • Gu GX, Dimas L, Qin Z, et al. Optimization of composite fracture properties: method, validation, and applications. J Appl Mech Trans ASME. 2016;83(7):1–7. DOI:10.1115/1.4033381.
  • Chawla R, Sharma S. A molecular dynamics study on efficient nanocomposite formation of styrene–butadiene rubber by incorporation of graphene. Graphene Technol. 2018;3(2–4):25–33. DOI:10.1007/s41127-018-0018-9.
  • Kairn T, Daivis PJ, Ivanov I, et al. Molecular-dynamics simulation of model polymer nanocomposite rheology and comparison with experiment. J Chem Phys. 2005;123(19):194905. DOI:10.1063/1.2110047
  • Yang Z, Yu CH, Buehler MJ. Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci Adv. 2021;7(15). DOI:10.1126/sciadv.abd7416
  • Zhu S, Ohsaki M, Guo X. Prediction of non-linear buckling load of imperfect reticulated shell using modified consistent imperfection and machine learning. Eng Struct. 2021;226:111374. doi: 10.1016/j.engstruct.2020.111374
  • Kazi MK, Eljack F, Mahdi E. Data-driven modeling to predict the load vs. displacement curves of targeted composite materials for industry 4.0 and smart manufacturing. Compos Struct. 2021;258:113207. doi: 10.1016/j.compstruct.2020.113207
  • Zhang C, Li Y, Jiang B, et al. Mechanical properties prediction of composite laminate with FEA and machine learning coupled method. Compos Struct. 2022;299:116086. DOI:10.1016/j.compstruct.2022.116086
  • Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. DOI:10.1038/nature14539.
  • Hughes TW, Williamson IAD, Minkov M, et al. Wave physics as an analog recurrent neural network. Sci Adv. 2019;5(12):1–7. DOI:10.1126/sciadv.aay6946.
  • Jensen Z, Kim E, Kwon S, et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent Sci. 2019;5(5):892–899. DOI:10.1021/acscentsci.9b00193
  • Aykol M, Hegde VI, Hung L, et al. Network analysis of synthesizable materials discovery. Nat Commun. 2019;10(1):1–7. DOI:10.1038/s41467-019-10030-5
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015;9351:12–20.
  • Yu CH, Buehler MJ. Sonification based de novo protein design using artificial intelligence, structure prediction, and analysis using molecular modeling. APL Bioeng. 2020;4(1):016108. DOI:10.1063/1.5133026.
  • Müller A, Taras A, Kraus MA. Scientific machine and deep learning investigations of the local buckling behaviour of hollow sections. Ce/Papers. 2022;5(4):1034–1042. DOI:10.1002/cepa.1848.
  • Tao F, Liu X, Du H, et al. Learning composite constitutive laws via coupling abaqus and deep neural network. Compos Struct. 2021;272:114137. DOI:10.1016/j.compstruct.2021.114137
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2020;63(11):139–144. DOI:10.1145/3422622
  • Müller A, Taras A. Prediction of the local buckling strength and load-displacement behaviour of SHS and RHS members using deep neural networks (DNN) – introduction to the deep neural network direct stiffness method (DNN-DSM). Steel Construction. 2022;15(S1):78–90. DOI:10.1002/stco.202100047.
  • Wagner HNR, Hühne C, Elishakoff I. Probabilistic and deterministic lower-bound design benchmarks for cylindrical shells under axial compression. Thin-Walled Struct. 2020;146:106451. doi: 10.1016/j.tws.2019.106451
  • Systèmes Dassault. Abaqus analysis user’s manual. Simulia Corp. Providence, RI, USA 40. 2007 ;
  • Yu GC, Wu LZ, Feng LJ, et al. Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Compos Struct. 2016;149:213–219. DOI:10.1016/j.compstruct.2016.04.010
  • Chen Y, Ye L, Fu K. Progressive failure of CFRP tubes reinforced with composite sandwich panels: numerical analysis and energy absorption. Compos Struct. 2021;263:113674. doi: 10.1016/j.compstruct.2021.113674
  • Mazza D, Pagani M. Automatic differentiation in pytorch. Proc ACM Program Lang. 2021;5(POPL):1–27. DOI:10.1145/3434309.
  • Bradski G. The Open CV library. Dr Dobb’s J Softw Tools Prof Program. 2000;25(11):120–123.
  • Isola P, Zhu JY, Zhou T, Efros AA, et al. “Image-to-image translation with conditional adversarial networks”, Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, July 21st - July 26th, 2017. Hawaii Convention Center, Honolulu, Hawaii, 2017Janua, pp 5967–5976.
  • Yin XX, Sun L, Fu Y, et al. U-Net-based medical image segmentation. J Healthc Eng. 2022;2022:1–16. doi: 10.1155/2022/4189781
  • Pan Z, Xu J, Guo Y, et al. Deep learning segmentation and classification for urban village using a worldview satellite image based on U-net. Remote Sens. 2020;12(10):1–17. DOI:10.3390/rs12101574.
  • Siddique N, Paheding S, Elkin CP, Devabhaktuni V, et al., “U-net and its variants for medical image segmentation: a review of theory and applications.“ IEEE Acess 9, pp. 82031–82057, 2021.
  • Zhou W, Bovik AC, Sheikh HR. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004 12;13(4):600–612. DOI:10.1109/TIP.2003.819861.
  • Raju, V, Lakshmi, KP, Jain VM, Kalidindi, A, Padma, V. Study the influence of normalization/transformation process on the accuracy of supervised classification, 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Aug 20 - 22, 2020, Francis Xavier Engineering College, Tirunelveli India. 2020;729–735.
  • Guillow SR, Lu G, Grzebieta RH. Quasi-static axial compression of thin-walled circular aluminium tubes. Int J Mech Sci. 2001;43(9):2103–2123. DOI:10.1016/S0020-7403(01)00031-5.
  • Ahn KH, Kim JS, Huh H. Energy absorption of expansion tube considering local buckling characteristics. Int J Mod Phys B. 2008;22(31n32):5993–5999. DOI:10.1142/S0217979208051480.
  • Zhang G, Zhu H, Wang Q, et al. Buckling analysis of thin-walled metal liner of cylindrical composite overwrapped pressure vessels with depressions after autofrettage processing. Sci Eng Compos Mater. 2021;28(1):540–554. DOI:10.1515/secm-2021-0051
  • Xu F, Abdelmoula R, Potier-Ferry M. On the buckling and post-buckling of core-shell cylinders under thermal loading. Int J Solids Struct. 2017;126–127:17–36. doi: 10.1016/j.ijsolstr.2017.07.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.