315
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive review of the elastic constants of carbon fibers: implications for design and manufacturing of high-performance composite materials

ORCID Icon, ORCID Icon & ORCID Icon
Pages 269-289 | Received 19 May 2023, Accepted 02 Aug 2023, Published online: 12 Aug 2023

References

  • Tanaka F, Okabe T. 1.4 historical review of processing, microstructures, and mechanical properties of pan-based carbon fibers. In: Comprehensive composite materials II 2017. Elsevier; 2018. pp. 66–85. doi:10.1016/B978-0-12-803581-8.09895-7
  • Roberts T. Rapid growth forecast for carbon fibre market. Reinforced Plastics query. 2007;51(2):10–13. doi: 10.1016/S0034-3617(07)70051-6
  • Kant M, Penumadu D. Dynamic mechanical characterization for nonlinear behavior of single carbon fibers. composites part a. Compos Part A Appl Sci Manuf. 2014;66:201–208. doi: 10.1016/j.compositesa.2014.07.019
  • Nathan M, Penumadu D. Nonlinear elastic response of pan based carbon fiber to tensile loading and relations to microstructure. Carbon. 2021;178:133–143. doi: 10.1016/j.carbon.2021.03.012
  • Keryvin V, Marchandise A, Grandidier JC. Non-linear elastic longitudinal behaviour of continuous carbon fibres/epoxy matrix composite laminae: material or geometrical feature? Composites. 2022;247:110329. doi: 10.1016/j.compositesb.2022.110329
  • Curtis GJ, Milne JM, Reynolds WN. Non-Hookean behaviour of strong carbon fibres. Nature. 1968;220(5171):1024–1025. doi: 10.1038/2201024a0
  • Beetz CP Jr, Budd GW. Strain modulation measurements of stiffening effects in carbon fibers. Rev Sci Instrum. 1983;54: 9(9):1222–1226. doi: 10.1063/1.1137554
  • Hayakawa E, Shioya M, Takaku A. Sonic modulus in fiber-axis direction of carbon fibers 1. Adv Compos Mater. 1994;4(1):33–46. doi: 10.1163/156855194X00123
  • Shioya M, Hayakawa E, Takaku A. Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres. J Mater Sci. 1996;31(17):4521–4532. doi: 10.1007/BF00366347
  • Smith RE. Ultrasonic elastic-constants of carbon fibers and their composited. J Appl Phys. 1972;43(6):2555–2561. doi: 10.1063/1.1661559
  • Soule D, Nezbeda C. Direct basal‐plane shear in single‐crystal graphite. J Appl Phys. 1968;39(11):5122–5139. doi: 10.1063/1.1655933
  • xxx. https://www.solvay.com/en/chemical-categories/our-composite-materials-solutions/carbon-fiber/product-catalog
  • Hine PJ, Gusev AA. Validating a micromechanical modelling scheme for predicting the five independent viscoelastic constants of unidirectional carbon fibre composites. Int J Eng Sci. 2019;144:103133. doi: 10.1016/j.ijengsci.2019.103133
  • Soden PD, Hinton MJ, Kaddour A. Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates. In: Failure criteria in fibre-reinforced-polymer composites. Elsevier; 2004. pp. 30–51. doi:10.1016/B978-008044475-8/50003-2
  • Kaddour A, Hinton MJ, Smith PA, et al. Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. Journal Of Composite Materials query. 2013;47(20–21):2427–2442. doi: 10.1177/0021998313499477
  • Datta S, Ledbetter H, Kyono T. Graphite-fiber elastic constants: determination from ultrasonic measurements on composite materials. In: Review of progress in quantitative nondestructive evaluation. Springer US; 1989. pp. 1481–1488. doi:10.1007/978-1-4613-0817-1_186
  • Tane M, Okuda H, Tanaka F. Nanocomposite microstructures dominating anisotropic elastic modulus in carbon fibers. Acta Materialia. 2019;166:75–84. doi: 10.1016/j.actamat.2018.12.029
  • Nunna S, Naebe M, Hameed N, et al. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview. Polym Degrad Stab. 2017;136:20–30. DOI:10.1016/j.polymdegradstab.2016.12.007
  • Ledbetter H, Datta S, Kyono T. Elastic constants of a graphite‐magnesium composite. Journal Of Applied Physics query. 1989;65(9):3411–3416. doi: 10.1063/1.342658
  • Adams RD, Lloyd DH. Apparatus for measuring torsional modulus and damping of single carbon-fibers. J Phys E Sci Instr. 1975;8(6):475–480. doi: 10.1088/0022-3735/8/6/015
  • Sawada Y, Shindo A. Torsional properties of carbon fibers. Carbon. 1992;30(4):619–629. doi: 10.1016/0008-6223(92)90181-U
  • Mehta V, Kumar S. Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength. JOURNAL OF MATERIALS Science query. 1994;29(14):3658–3664. doi: 10.1007/BF00357332
  • Ishikawa M, Kogo Y, Koyanagi J, et al. Torsional modulus and internal friction of polyacrylonitrile-and pitch-based carbon fibers. J Mater Sci. 2015;50(21):7018–7025. doi: 10.1007/s10853-015-9254-z
  • Ward IM. Optical and mechanical anisotropy in crystalline polymers. Proc Phys Soc. 1962;80(5):1176. doi: 10.1088/0370-1328/80/5/319
  • Ruland W. In The relationship between preferred orientation and Young’s modulus of carbon fibers. Appl Polym Symp. 1969;9:293–301.
  • Northolt MG, Veldhuizen LH, Jansen H. Tensile deformation of carbon-fibers and the relationship with the modulus for shear between the basal planes. Carbon. 1991;29(8):1267–1279. doi: 10.1016/0008-6223(91)90046-L
  • Loidl D, Peterlik H, Muller M, et al. Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction. Carbon. 2003;41(3):563–570. doi: 10.1016/S0008-6223(02)00359-7
  • Tanaka F, Okabe T, Okuda H, et al. The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon. 2013;52:372–378. DOI:10.1016/j.carbon.2012.09.047
  • Li H, Liu C, Chen J. Predicting and characterizing plastic deformation behavior of transversely-isotropic carbon fiber monofilament using finite element simulation and nanoindentation. Fibers Polym. 2021;22(8):2316–2322. doi: 10.1007/s12221-021-1081-z
  • Fujita K, Nagai H, Sugimoto Y, et al. Various mechanical tests of carbon fiber monofilaments. Carbon Reports. 2023;2(1): 31–49. in Japanese.
  • Csanádi T, Németh D, Zhang C, et al. Nanoindentation derived elastic constants of carbon fibres and their nanostructural based predictions. Carbon. 2017;119:314–325. DOI:10.1016/j.carbon.2017.04.048
  • Duan S, Liu F, Pettersson T, et al. Determination of transverse and shear moduli of single carbon fibres. Carbon. 2020;158:772–782. DOI:10.1016/j.carbon.2019.11.054
  • Shirasu K, Goto K, Naito K. Microstructure-elastic property relationships in carbon fibers: A nanoindentation study. Composites. 2020;200:108342. doi: 10.1016/j.compositesb.2020.108342
  • Guruprasad T, Keryvin V, Charleux L, et al. On the determination of the elastic constants of carbon fibres by nanoindentation tests. Carbon. 2021;173:572–586. DOI:10.1016/j.carbon.2020.09.052
  • Miyagawa H, Sato C, Mase T, et al. Transverse elastic modulus of carbon fibers measured by Raman spectroscopy. Mater Sci Eng A. 2005;412(1–2):88–92. doi: 10.1016/j.msea.2005.08.037
  • Miyagawa H, Mase T, Sato C, et al. Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon. 2006;44(10):2002–2008. doi: 10.1016/j.carbon.2006.01.026
  • Maurin R, Davies P, Baral N, et al. Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl Compos Mater. 2008;15(2):61–73. doi: 10.1007/s10443-008-9057-3
  • Kawabata S. Measurement of the transverse mechanical properties of high-performance fibres. J Tex Inst. 1990;81(4):432–447. doi: 10.1080/00405009008658721
  • Fujita K, Sawada Y, Nakanishi Y. Effect of cross-sectional textures on transverse compressive properties of pitch-based carbon fibers. J Soc Mater SciJap. 2001;50(6):116–121. doi: 10.2472/jsms.50.6Appendix_116
  • Nagai H, Fujita K, Urabe K, et al. FEM analysis of flexural modulus of carbon fiber monofilament considering anisotropy. Adv Compos Mater. 2022;31(2):137–150. doi: 10.1080/09243046.2021.1931776
  • Naito K, Tanaka Y, Yang JM. Transverse compressive properties of polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon. 2017;118:168–183. doi: 10.1016/j.carbon.2017.03.031
  • Ségur D, Guillet Y, Audoin B. Intrinsic geometric scattering probed by picosecond optoacoustics in a cylindrical cavity: Application to acoustic and optical characterizations of a single micron carbon fiber. Applied Physics Letters query. 2010;97(3):031901. doi: 10.1063/1.3464563
  • Ito A, Okamoto S. Using molecular dynamics to assess mechanical properties of PAN-based carbon fibers comprising imperfect crystals with amorphous structures. Int J Mech Mechatron Eng. 2013;7(9):1840–1845.
  • Shi L, Sessim M, Tonks MR, et al. Generation and characterization of an improved carbon fiber model by molecular dynamics. Carbon. 2021;173:232–244. DOI:10.1016/j.carbon.2020.11.011
  • Gonçalves R, Trinca AJ, Pellis BP. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Sci Technol. 2014;48(2):269–287. doi: 10.1007/s00226-013-0598-8
  • Tanaka F, Okabe T, Okuda H, et al. The effect of nanostructure upon the compressive strength of carbon fibres. J Mater Sci. 2013;48(5):2104–2110. doi: 10.1007/s10853-012-6984-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.