673
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Multimodal Imaging in Anterior Uveitis

, MMed (Ophth), FRCOphth, FAMS, FRCSEd (Ophth), MCI, , DO, DNB & , MMed(Ophth), FRCS(G), FRCS(Ed), FRCOphth
Pages 434-446 | Received 08 Jul 2016, Accepted 03 May 2017, Published online: 11 Jul 2017

References

  • Chang JH, Wakefield D. Uveitis: A global perspective. Ocul Immunol Inflamm. 2002;10(4):263–279.
  • Merrill PT, Kim J, Cox TA, et al. Uveitis in the southeastern United States. Curr Eye Res. 1997;16(9):865–874.
  • McCannel CA, Holland GN, Helm CJ, et al. Causes of uveitis in the general practice of ophthalmology. UCLA community-based uveitis study group. Am J Ophthalmol. 1996;121(1):35–46.
  • Silpa-Archa S, Silpa-Archa N, Preble JM, et al. Vogt–Koyanagi–Harada syndrome: Perspectives for immunogenetics, multimodal imaging, and therapeutic options. Autoimmun Rev. 2016;15(8):809–819.
  • Teussink MM, Huis In Het Veld PI, De Vries LA, et al. Multimodal imaging of the disease progression of birdshot chorioretinopathy. Acta Ophthalmol. 2016;94(8):815–823.
  • Modi YS, Epstein A, Bhaleeya S, et al. Multimodal imaging of sarcoid choroidal granulomas. J Ophthalmic Inflamm Infect. 2013;3(1):58.
  • Painter R. Slit lamp photography: the basics. J Vis Commun Med. 2015; 38 (1–2): 119–123.
  • Sen HN, Sangave AA, Goldstein DA, et al. A standardized grading system for scleritis. Ophthalmology. 2011;118(4):768–771.
  • Setala K. Corneal endothelial cell density in iridocyclitis. Acta Ophthalmol (Copenh). 1979;57(2):277–286.
  • Olsen T. Changes in the corneal endothelium after acute anterior uveitis as seen with the specular microscope. Acta Ophthalmol (Copenh). 1980;58(2):250–256.
  • Szepessy Z, Toth G, Barsi A, et al. Anterior segment characteristics of Fuchs uveitis syndrome. Ocul Immunol Inflamm. 2016;24(5):594–598.
  • Alfawaz AM, Holland GN, Yu F, et al. Corneal endothelium in patients with anterior uveitis. Ophthalmology. 2016;123(8):1637–1645.
  • Olsen T. Transient changes in specular appearance of the corneal endothelium and in corneal thickness during anterior uveitis. Acta Ophthalmol (Copenh). 1981;59(1):100–109.
  • Brooks AM, Grant G, Gillies WE. Differential specular microscopy in keratopathy and anterior uveitis. Cornea. 1988;7(2):105–111.
  • Pillai CT, Dua HS, Azuara-Blanco A, et al. Evaluation of corneal endothelium and keratic precipitates by specular microscopy in anterior uveitis. Br J Ophthalmol. 2000;84(12):1367–1371.
  • Alanko HI, Vuorre I, Saari KM. Characteristics of corneal endothelial cells in Fuchs’ heterochromic cyclitis. Acta Ophthalmol (Copenh). 1986;64(6):623–631.
  • Takase H, Kubono R, Terada Y, et al. Comparison of the ocular characteristics of anterior uveitis caused by herpes simplex virus, varicella-zoster virus, and cytomegalovirus. Jpn J Ophthalmol. 2014;58(6):473–482.
  • Kandori M, Miyazaki D, Yakura K, et al. Relationship between the number of cytomegalovirus in anterior chamber and severity of anterior segment inflammation. Jpn J Ophthalmol. 2013;57(6):497–502.
  • Miyanaga M, Sugita S, Shimizu N, et al. A significant association of viral loads with corneal endothelial cell damage in cytomegalovirus anterior uveitis. Br J Ophthalmol. 2010;94(3):336–340.
  • Vannas A, Ahonen R. Herpetic endothelial keratitis. A case report. Acta Ophthalmol (Copenh). 1981;59(2):296–301.
  • Hirose N, Shimomura Y, Matsuda M, et al. Corneal endothelial changes associated with herpetic stromal keratitis. Jpn J Ophthalmol. 1988;32(1):14–20.
  • Walter KA, Coulter VL, Palay DA, et al. Corneal endothelial deposits in patients with cytomegalovirus retinitis. Am J Ophthalmol. 1996;121(4):391–396.
  • Wertheim MS, Mathers WD, Planck SJ, et al. In vivo confocal microscopy of keratic precipitates. Arch Ophthalmol. 2004;122(12):1773–1781.
  • Mahendradas P, Shetty R, Narayana KM, et al. In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology. 2010;117(2):373–380.
  • Kanavi MR, Soheilian M, Naghshgar N. Confocal scan of keratic precipitates in uveitic eyes of various etiologies. Cornea. 2010;29(6):650–654.
  • Kanavi MR, Soheilian M. Confocal scan features of keratic precipitates in granulomatous versus nongranulomatous uveitis. J Ophthalmic Vis Res. 2011;6(4):255–258.
  • Mocan MC, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behcet’s disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2009;23(5):1221–1227.
  • Kanavi MR, Soheilian M, Yazdani S, et al. Confocal scan features of keratic precipitates in Fuchs heterochromic iridocyclitis. Cornea. 2010;29(1):39–42.
  • Mocan MC, Kadayifcilar S, Irkec M. In vivo confocal microscopic evaluation of keratic precipitates and endothelial morphology in Fuchs’ uveitis syndrome. Eye (Lond). 2012;26(1):119–125.
  • Labbe A, Dupas B, Offret H, et al. Evaluation of keratic precipitates and corneal endothelium in Fuchs’ heterochromic cyclitis by in vivo confocal microscopy. Br J Ophthalmol. 2009;93(5):673–677.
  • Mahendradas P, Shetty R, Malathi J, et al. Chikungunya virus iridocyclitis in Fuchs’ heterochromic iridocyclitis. Indian J Ophthalmol. 2010;58(6):545–547.
  • Tugal-Tutkun I, Guney-Tefekli E, Kamaci-Duman F, et al. A cross-sectional and longitudinal study of Fuchs uveitis syndrome in Turkish patients. Am J Ophthalmol. 2009;148(4):510–5e1.
  • Shiraishi A, Hara Y, Takahashi M, et al. Demonstration of “owl’s eye” morphology by confocal microscopy in a patient with presumed cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2007;143(4):715–717.
  • Kobayashi A, Yokogawa H, Higashide T, et al. Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2012;153(3):445–453.
  • Knoll AB, Postole AS, Auffarth GU, et al. Frequency of dendritiform inflammatory cells in the cornea in herpetic anterior uveitis without clinical keratitis and Fuchs uveitis. J Ophthalmic Inflamm Infect. 2014;4:31.
  • Postole AS, Knoll AB, Auffarth GU, et al. In vivo confocal microscopy of inflammatory cells in the corneal subbasal nerve plexus in patients with different subtypes of anterior uveitis. Br J Ophthalmol. 2016;100:1551–1556.
  • Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–1589.
  • Radhakrishnan S, Rollins AM, Roth JE, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119(8):1179–1185.
  • Asrani S, Sarunic M, Santiago C, et al. Detailed visualization of the anterior segment using fourier-domain optical coherence tomography. Arch Ophthalmol. 2008;126(6):765–771.
  • Igbre AO, Rico MC, Garg SJ. High-speed optical coherence tomography as a reliable adjuvant tool to grade ocular anterior chamber inflammation. Retina. 2014;34(3):504–508.
  • Sharma S, Lowder CY, Vasanji A, et al. Automated analysis of anterior chamber inflammation by spectral-domain optical coherence tomography. Ophthalmology. 2015;122(7):1464–1470.
  • Li Y, Lowder C, Zhang X, et al. Anterior chamber cell grading by optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(1):258–265.
  • Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature working g. standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. American J Ophthalmol. 2005;140(3):509–516.
  • Rose-Nussbaumer J, Li Y, Lin P, et al. Aqueous cell differentiation in anterior uveitis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(3):1430–1436.
  • Invernizzi A, Cigada M, Savoldi L, et al. In vivo analysis of the iris thickness by spectral domain optical coherence tomography. Br J Ophthalmol. 2014;98(9):1245–1249.
  • Mahendradas P, Avadhani K, Ramachandran S, et al. Anterior segment optical coherence tomography findings of iris granulomas in Hansen’s disease: A case report. J Ophthalmic Inflamm Infect. 2013;3(1):36.
  • Yan H, Li J, Yang L. [The application of optical coherence tomography in uveitis patients]. Zhonghua Yan Ke Za Zhi. 2015;51(10):790–794.
  • Agra C, Agra L, Dantas J, et al. Anterior segment optical coherence tomography in acute anterior uveitis. Arq Bras Oftalmol. 2014;77(1):1–3.
  • Kuroda Y, Uji A, Morooka S, et al. Morphological features in anterior scleral inflammation using swept-source optical coherence tomography with multiple B-scan averaging. Br J Ophthalmol. 2017;101(4):411–417.
  • Axmann S, Ebneter A, Zinkernagel MS. Imaging of the sclera in patients with scleritis and episcleritis using anterior segment optical coherence tomography. Ocul Immunol Inflamm. 2016;24(1):29–34.
  • Levison AL, Lowder CY, Baynes KM, et al. Anterior segment spectral domain optical coherence tomography imaging of patients with anterior scleritis. Int Ophthalmol. 2016;36(4):499–508.
  • Tran VT, LeHoang P, Herbort CP. Value of high-frequency ultrasound biomicroscopy in uveitis. Eye (Lond). 2001;15(Pt 1): 23–30.
  • Bhende M, Biswas J, Gopal L. Ultrasound biomicroscopy in the diagnosis and management of intraocular gnathostomiasis. Am J Ophthalmol. 2005;140(1):140–142.
  • Amino K, Yamakawa R. Long-term results of out-of-the-bag intraocular lens implantation. J Cataract Refract Surg. 2000;26(2):266–270.
  • Mostafavi D, Nagel D, Danias J. Haptic-induced postoperative complications. Evaluation using ultrasound biomicroscopy. Canadian J Ophthalmol J Canadien D’ophtalmologie. 2013;48(6):478–481.
  • Ozdal PC, Mansour M, Deschenes J. Ultrasound biomicroscopy of pseudophakic eyes with chronic postoperative inflammation. J Cataract Refract Surg. 2003;29(6):1185–1191.
  • Roters S, Szurman P, Engels BF, et al. Ultrasound biomicroscopy in chronic ocular hypotony: its impact on diagnosis and management. Retina. 2002;22(5):581–588.
  • Da Costa DS, Lowder C, De Moraes HV Jr., et al. [The relationship between the length of ciliary processes as measured by ultrasound biomicroscopy and the duration, localization and severity of uveitis]. Arq Bras Oftalmol. 2006;69(3):383–388.
  • Peizeng Y, Qianli M, Xiangkun H, et al. Longitudinal study of anterior segment inflammation by ultrasound biomicroscopy in patients with acute anterior uveitis. Acta Ophthalmol. 2009;87(2):211–215.
  • Yang P, Fang W, Jin H, et al. Clinical features of Chinese patients with Fuchs’ syndrome. Ophthalmology. 2006;113(3):473–480.
  • Tugal-Tutkun I, Herbort CP. Laser flare photometry: A noninvasive, objective, and quantitative method to measure intraocular inflammation. Int Ophthalmol. 2010;30(5):453–464.
  • Biziorek B, Zarnowski T, Zagorski Z. [Evaluation and monitoring of selected inflammation patterns in uveitis using laser tyndallometry]. Klin Oczna. 2000;102(3):169–172.
  • Ladas JG, Wheeler NC, Morhun PJ, et al. Laser flare-cell photometry: methodology and clinical applications. Surv Ophthalmol. 2005;50(1):27–47.
  • Sawa M. Clinical application of laser flare-cell meter. Jpn J Ophthalmol. 1990;34(3):346–363.
  • Konstantopoulou K, Del’Omo R, Morley AM, et al. A comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter. Int Ophthalmol. 2015;35(5):629–633.
  • Ikeji F, Pavesio C, Bunce C, et al. Quantitative assessment of the effects of pupillary dilation on aqueous flare in eyes with chronic anterior uveitis using laser flare photometry. Int Ophthalmol. 2010;30(5):491–494.
  • El-Maghraby A, Marzouki A, Matheen TM, et al. Reproducibility and validity of laser flare/cell meter measurements as an objective method of assessing intraocular inflammation. Arch Ophthalmol. 1992;110(7):960–962.
  • El-Harazi SM, Feldman RM, Chuang AZ, et al. Reproducibility of the laser flare meter and laser cell counter in assessing anterior chamber inflammation following cataract surgery. Ophthalmic Surg Lasers. 1998;29(5):380–384.
  • Herbort CP, Guex-Crosier Y, De Ancos E, et al. Use of laser flare photometry to assess and monitor inflammation in uveitis. Ophthalmology. 1997;104(1):64–71. discussion −2.
  • Wenkel H, Nguyen NX, Schonherr U, et al. [Laser tyndallometry and monitoring of treatment in 20 children with juvenile uveitis]. Klin Monbl Augenheilkd. 2000;217(6):323–328.
  • Bohm MR, Tappeiner C, Breitbach MA, et al. Ocular hypotony in patients with juvenile idiopathic arthritis-associated uveitis. Am J Ophthalmol. 2017;173:45–55.
  • Tappeiner C, Heinz C, Roesel M, et al. Elevated laser flare values correlate with complicated course of anterior uveitis in patients with juvenile idiopathic arthritis. Acta Ophthalmol. 2011;89(6):e521–7.
  • Zierhut M, Heiligenhaus A, deBoer J, et al. Controversies in juvenile idiopathic arthritis-associated uveitis. Ocul Immunol Inflamm. 2013;21(3):167–179.
  • Guex-Crosier Y, Pittet N, Herbort CP. Evaluation of laser flare-cell photometry in the appraisal and management of intraocular inflammation in uveitis. Ophthalmology. 1994;101(4):728–735.
  • Bernasconi O, Papadia M, Herbort CP. Sensitivity of laser flare photometry compared to slit-lamp cell evaluation in monitoring anterior chamber inflammation in uveitis. Int Ophthalmol. 2010;30(5):495–500.
  • Norrsell K, Holmer AK, Jacobson H. Aqueous flare in patients with monocular iris atrophy and uveitis. A laser flare and iris angiography study. Acta Ophthalmol Scand. 1998;76(4):405–412.
  • Nguyen NX, Kuchle M, Naumann GO. Quantification of blood-aqueous barrier breakdown after phacoemulsification in Fuchs’ heterochromic uveitis. Ophthalmologica J Inter D’ophtalmologie Inter J Ophthalmol Zeitschrift Fur Augenheilkunde. 2005;219(1):21–25.
  • Fang W, Zhou H, Yang P, et al. Aqueous flare and cells in Fuchs syndrome. Eye (Lond). 2009;23(1):79–84.
  • Oshika T, Nishi M, Mochizuki M, et al. Quantitative assessment of aqueous flare and cells in uveitis. Jpn J Ophthalmol. 1989;33(3):279–287.
  • Tugal-Tutkun I, Cingu K, Kir N, et al. Use of laser flare-cell photometry to quantify intraocular inflammation in patients with Behcet uveitis. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. 2008;246(8):1169–1177.
  • Yalcindag FN, Kiziltunc PB, Savku E. Evaluation of intraocular inflammation with laser flare photometry in behcet uveitis. Ocul Immunol Inflamm. 2017;25(1):41–45.
  • Fang W, Zhou H, Yang P, et al. Longitudinal quantification of aqueous flare and cells in Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2008;92(2):182–185.
  • Bruun-Jensen J. Fluorescein angiography of the anterior segment. Am J Ophthalmol. 1969;67(6):842–845.
  • Ikegami M, Maruyama A. [Fluorescein angiography of the anterior ocular segment. Report II. Permeability of conjunctival vessels in normal and diseased states (author’s transl)]. Nihon Ganka Gakkai Zasshi. 1975;79(10):1393–1404.
  • Meyer PA, Watson PG. Low dose fluorescein angiography of the conjunctiva and episclera. Br J Ophthalmol. 1987;71(1):2–10.
  • Ormerod LD, Fariza E, Hughes GW, et al. Anterior segment fluorescein videoangiography with a scanning angiographic microscope. Ophthalmology. 1990;97(6):745–751.
  • Demeler U. Value of fluorescein angiography of the iris in uveitis. Trans Ophthalmol Soc U K. 1981;101 (Pt 3)(3): 380–383.
  • Brooks AM, Gillies WE. Fluorescein angiography of the iris and specular microscopy of the corneal endothelium in some cases of glaucoma secondary to chronic cyclitis. Ophthalmology. 1988;95(12):1624–1630.
  • Brooks AM, Grant G, Gillies WE. Changes in the iris vasculature and corneal endothelium in chronic cyclitis. Aust N Z J Ophthalmol. 1986;14(3):189–197.
  • Laatikainen L. Vascular changes in the iris in chronic anterior uveitis. Br J Ophthalmol. 1979;63(3):145–149.
  • Brancato R, Bandello F, Lattanzio R. Iris fluorescein angiography in clinical practice. Surv Ophthalmol. 1997;42(1):41–70.
  • Marsh RJ, Easty DL, Jones BR. Iritis and iris atrophy in Herpes zoster ophthalmicus. Am J Ophthalmol. 1974;78(2):255–261.
  • Akpek EK, Gottsch JD. Herpes zoster sine Herpete presenting with hyphema. Ocul Immunol Inflamm. 2000;8(2):115–118.
  • Berger BB, Tessler HH, Kottow MH. Anterior segment ischemia in Fuchs’ heterochromic cyclitis. Arch Ophthalmol. 1980;98(3):499–501.
  • Saari M, Vuorre I, Nieminen H. Fuchs’s heterochromic cyclitis: A simultaneous bilateral fluorescein angiographic study of the iris. Br J Ophthalmol. 1978;62(10):715–721.
  • Karma A, Laatikainen L. Fluorescein iris angiography in nodular sarcoid iritis. Int Ophthalmol. 1981;3(2):97–106.
  • Schwartz LK, O’Connor GR. Secondary syphilis with iris papules. Am J Ophthalmol. 1980;90(3):380–384.
  • Watson PG, Young RD. Changes at the periphery of a lesion in necrotising scleritis: Anterior segment fluorescein angiography correlated with electron microscopy. Br J Ophthalmol. 1985;69(9):656–663.
  • Wiechens B, Nolle B. Iris angiographic changes in multifocal chorioretinitis with panuveitis. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. 1999;237(11):902–907.
  • Ohno S. Immunological aspects of Behcet’s and Vogt–Koyanagi–Harada’s diseases. Trans Ophthalmol Soc U K. 1981;101( (Pt 3)(3)): 335–341.
  • Ohno S, Kimura SJ, O’Connor GR, et al. HLA antigens and uveitis. Br J Ophthalmol. 1977;61(1):62–64.
  • Saari M, Vuorre I, Nieminen H. Infra-red transillumination stereophotography of the iris in Fuchs’s heterochromic cyclitis. Br J Ophthalmol. 1978;62(2):110–115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.