360
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Multimodal Imaging of the Normal Eye

, DNB, , MD, , MS, , MD, , PhD & , DNB
Pages 726-736 | Received 09 Nov 2016, Accepted 31 Aug 2017, Published online: 30 Oct 2017

REFERENCES

  • Spaide RF, Goldberg N, Freund KB. Redefining multifocal choroiditis and panuveitis and punctate inner choroidopathy through multimodal imaging. Retina. July–August, 2013;33(7):1315–1324.
  • Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmol. April, 2014;28(2):95–103.
  • Goldberg NR, Jabs DA. Multimodal imaging of a tuberculous granuloma. Retina. September, 2015;35(9):1919–1920.
  • Modi YS, Epstein A, Bhaleeya S, Harbour JW, Albini T. Multimodal imaging of sarcoid choroidal granulomas. J Ophthalmic Inflamm Infect. August 23, 2013;3(1):58.
  • Freitas-Neto CA, Oréfice F, Costa RA, et al.Oréfice JL, Dhanireddy S, Maghsoudlou A, Foster CS. Multimodal imaging assisting the early diagnosis of Cat-Scratch Neuroretinitis. Semin Ophthalmol. 2016;31(5):495–498.
  • Baillif S, Delas J, Asrargis A, Gastaud P. Multimodal imaging of bilateral cryptococcal choroiditis. Retina. January, 2013;33(1):249–251.
  • Silpa-Archa S, Silpa-Archa N, Preble JM, Foster CS. Vogt-Koyanagi-Harada syndrome: Perspectives for immunogenetics, multimodal imaging, and therapeutic options. Autoimmun Rev. August, 2016;15(8):809–819.
  • Tan AC, Fleckenstein M, Schmitz-Valckenberg S, Holz FG. Clinical applicationof multicolor imaging technology. Ophthalmologica. July 13, 2016;236:8–18. [Epub ahead ofprint] PubMed PMID: 27404384.
  • Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36(3):718–729.
  • Von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol. 1995;79(5):407–412.
  • Schütt F, Davies S, Kopitz J, Holz FG, Boulton ME. Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 2000;41(8):2303–2308.
  • Bergmann M, Schütt F, Holz FG, Kopitz J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. Faseb J. 2004;18(3):562–564.
  • Heiferman MJ, Fawzi AA. Discordance between blue-light autofluorescence andnear-infrared autofluorescence in age-related macular degeneration. Retina. December, 2016;36(Suppl 1):S137–S146.
  • Marmor MF, Ravin JG. Fluorescein angiography: Insight and serendipity a half century ago. Arch Ophthalmol. 2011;129(7):943–948.
  • Dollery CT, Hodge JV, Engel M. Studies of the retinal circulation with fluorescein. Br Med J. 1962;2(5314):1210–1215.
  • Manivannan A, Plskova J, Farrow A, Mckay S, Sharp PF, Forrester JV. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. September, 2005;140(3):525–527.
  • Flower RW, Yannuzzi LA, Slakter JS. History of indocyanine green angiography. In: Yannuzzi LA, Flower RW, Slakter JS, eds. Indocyanine Green Angiography. St Louis, MO: Mosby;1997:2–17.
  • Bischoff PM, Flower RW. Ten years experience with choroidal angiography using indocyanine green dye: A new routine examination or an epilogue? Doc Ophthalmol. 1985;60:235–291.
  • Flower RW, Hochheimer BF. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J. 1976;138:33–42.
  • Geeraets WJ, Berry ER. Ocular spectral characteristics as related to hazards from lasers and other light sources. Am J Ophthalmol. 1968;66:15–20.
  • Staurenghi G, Bottoni F, Giani A, Chapter 2 – Clinical applications of diagnostic indocyanine green angiography. In: Ryan SJ Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P,eds.Retina. 5th ed., Elsevier; 2015; 51–81.
  • Herbort CP, Papadia M, Mantovani A. Classification of choroiditis based on inflammatory lesion process rather than fundus appearance: Enhanced comprehension through the ICGA concepts of the iceberg and jellyfish effects. Klin Monbl Augenheilkd. April, 2012;229(4):306–313. doi:10.1055/s-0031-1299394. Epub 2012 April 11.
  • Fardeau C, Herbort CP, Kullmann N, Quentel G, LeHoang P. Indocyanine green angiography in birdshot chorioretinopathy. Ophthalmology. 1999;106:1928–1934.
  • Abouammoh MA, Gupta V, Hemachandran S, Herbort CP, Abu El-Asrar AM. Indocyanine green angiographic findings in initial-onset acute Vogt-Koyanagi-Harada disease. Acta Ophthalmol. January 29, 2016 . doi:10.1111/aos.12974. [Epub ahead of print].
  • Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12:191–223.
  • Mueller AJ, Bartsch DU, Folberg R, et al. Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy. Arch Ophthalmol. 1998;116:31–39.
  • Spaide RF, Orlock DA, Herrmann-Delemazure B, et al. Wide- 
angle indocyanine green angiography. Retina. 1998;18:44–49.
  • Klufas MA1, Yannuzzi NA, Pang CE, et al. Feasibility and clinical utility of ultra-widefield indocyanine green angiography. Retina. March, 2015;35(3):508–520. doi:10.1097/IAE.0000000000000318.
  • Barua N, Sitaraman C, Goel S, Chakraborti C, Mukherjee S, Parashar H. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population. Indian J Ophthalmol. April, 2016;64(4):296–302.
  • Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. International Nomenclature for Optical Coherence Tomography (IN•OCT) Panel. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: The IN•OCT consensus. Ophthalmology. August, 2014;121(8):1572–1578.
  • Lujan BJ, Roorda A, Croskrey JA, et al. Directional optical coherence tomography provides accurate outer nuclear layer and henle fiber layer measurements. Retina. August, 2015;35(8):1511–1520.
  • Tong KK, Lujan BJ, Zhou Y, Lin MC. Directional optical coherence tomography reveals reliable outer nuclear layer measurements. Optom Vis Sci. July, 2016;93(7):714–719.
  • Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: Literature review and model. Retina. September, 2011;31(8):1609–1619.
  • Mori K, Kanno J, Gehlbach PL. Retinochoroidal morphology described by wide-field montage imaging of spectral domain optical coherence tomography. Retina. February, 2016;36(2):375–384.
  • Morgan JI. The fundus photo has met its match: Optical coherence tomography and adaptive optics ophthalmoscopy are here to stay. Ophthalmic Physiol Opt. May, 2016;36(3):218–239.
  • Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. July 1, 2016;57(9):OCT27–36.
  • Yu S, Lu J, Cao D, et al. The role of optical coherence tomography angiography in fundus vascular abnormalities. BMC Ophthalmol. July 13, 2016;16:107.
  • Coscas F, Sellam A, Glacet-Bernard A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. July 1, 2016;57(9):OCT211–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.