151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the interfacial strength of jute fiber/polylactic acid composites via surface carboxymethylation pretreatment and in situ growth of ZnO nanorods

, , , , , , & show all
Pages 583-599 | Received 14 Jul 2023, Accepted 12 Oct 2023, Published online: 19 Oct 2023

References

  • Wu Y, Xia C, Cai L, et al. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. J Clean Prod. 2018;184:92–100. doi: 10.1016/j.jclepro.2018.02.257
  • Dutta S, Kim NK, Das R, et al. Effects of sample orientation on the fire reaction properties of natural fibre composites. Compos B Eng. 2019;157:195–206. doi: 10.1016/j.compositesb.2018.08.118
  • Sanjay MR, Madhu P, Jawaid M, et al. Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod. 2018;172:566–581. doi: 10.1016/j.jclepro.2017.10.101
  • Li Y, Ma H, Shen Y, et al. Effects of resin inside fiber lumen on the mechanical properties of sisal fiber reinforced composites. Compos Sci Technol. 2015;108:32–40. doi: 10.1016/j.compscitech.2015.01.003
  • Siddika S, Mansura F, Hasan M, et al. Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fiber Polym. 2014;15(5):1023–1028. doi: 10.1007/s12221-014-1023-0
  • Tian H, Zhang Y, Yang C, et al. Recent advances in experimental studies of the mechanical behaviour of natural fibre-reinforced cementitious composites. Struct Cconcrete. 2016;17(4):564–575. doi: 10.1002/suco.201500177
  • Shivamurthy B, Naik N, Thimappa B, et al. Mechanical property evaluation of alkali-treated jute fiber reinforced bio-epoxy composite materials. Mater Today Proc. 2020;28:2116–2120. doi: 10.1016/j.matpr.2020.04.016
  • Song X, Zhang C, Yang Y, et al. Effect of oligomers from epoxidized soybean oil and sebacic acid on the toughness of polylactic acid/bamboo fiber composites. J Appl Polym Sci. 2022;139(5):e51583. doi: 10.1002/app.51583
  • Cai M, Takagi H, Nakagaito AN, et al. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A Appl S. 2016;90:589–597. doi: 10.1016/j.compositesa.2016.08.025
  • Yuan J, Feng Y, He L. Effect of thermal treatment on properties of ramie fibers. Polym Degrad Stab. 2016;133:303–311. doi: 10.1016/j.polymdegradstab.2016.09.012
  • Dong Z, Li N, Dong A, et al. Enhancement of interface between lignocellulosic fibers and polypropylene matrix via the structure alteration of lignin at elevated temperatures. Materials. 2020;13(23):5428. doi: 10.3390/ma13235428
  • Song X, Zhang C, Yang Y, et al. Cardanol derivatives as compatibilizers for strengthening and toughening polylactic acid/bamboo fiber bio-composites. Polym Compos. 2023;1‐14.
  • Rahman MM, Rahman MR, Hamdan S, et al. Effect of silicon dioxide/nanoclay on the properties of jute fiber/polyethylene biocomposites. J Vinyl Addit Technol. 2017;23(S1):E107–E112. doi: 10.1002/vnl.21554
  • Liu X, Cui Y, Hao S, et al. Influence of depositing nano-SiO2 particles on the surface microstructure and properties of jute fibers via in situ synthesis. Compos Part A Appl S. 2018;109:368–375. doi: 10.1016/j.compositesa.2018.03.026
  • Foruzanmehr M, Vuillaume PY, Elkoun S, et al. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Design. 2016;106:295–304. doi: 10.1016/j.matdes.2016.05.103
  • Francesca S, Iván R, Irene B, et al. Zinc oxide nanostructures and stearic acid as surface modifiers for flax fabrics in polylactic acid biocomposites. Int j biol macromol. 2015;177:495–504. doi: 10.1016/j.ijbiomac.2021.02.171
  • Francesca S, Andrea M, Valerio DL, et al. Surface modification of basalt fibers with ZnO nanorods and its effect on thermal and mechanical properties of PLA-based composites. Biomolecules. 2021;11(2):200. doi: 10.3390/biom11020200
  • Yang C, Han R, Nie M, et al. Interfacial reinforcement mechanism in poly(lactic acid)/natural fiber biocomposites featuring ZnO nanowires at the interface. Mater Design. 2020;2020(186):108332. doi: 10.1016/j.matdes.2019.108332
  • Zhang B, Liang T, Shao X, et al. Nondestructive grafting of ZnO on the surface of aramid fibers followed by silane grafting to improve its interfacial adhesion property with rubber. ACS Appl Polym Mater. 2021;3(9):3(9)4587–4594. doi: 10.1021/acsapm.1c00682
  • Zhang J, Teng C. Nondestructive growing nano-ZnO on aramid fibers to improve UV resistance and enhance interfacial strength in composites. Mater Design. 2020;192:108774. doi: 10.1016/j.matdes.2020.108774
  • Ma L, Zhang J, Teng C. Covalent functionalization of aramid fibers with zinc oxide nano-interphase for improved UV resistance and interfacial strength in composites. Compos Sci Technol. 2020;188:107996. doi: 10.1016/j.compscitech.2020.107996
  • Yang Y, Nie W, Zhang H, et al. Homogeneous and aligned ZnO nanorods@Jute fibers for enhanced mechanical/microwave absorbing performance and thermal stability. Mater Chem Phys. 2022;295:127031. doi: 10.1016/j.matchemphys.2022.127031
  • Zheng M, Wang P, Zhao S, et al. Cellulose nanofiber induced self-assembly of zinc oxide nanoparticles: theoretical and experimental study on interfacial interaction. Carbohydr Polym. 2018;195:525–533. doi: 10.1016/j.carbpol.2018.05.016
  • Tao Y, Fu M, Zhao A, et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloy Compd. 2010;489(1):99–102. doi: 10.1016/j.jallcom.2009.09.020
  • Huang L, Cao H, Liu Y, et al. Advances in crystal nucleation theory. Mater Rev. 2014;28(15):6.
  • Liu X, Hao S, Cui Y, et al. Improvement on the interfacial compatibility of jute fiber-reinforced polypropylene composites by different surface treatments. J Ind Text. 2020;49(7):906–922. doi: 10.1177/1528083718801366
  • Liu X, Cui Y. Multi-scale analysis of the interface structure and failure behaviors for n-SiO2@jute fiber/PP composites. Compos Struct. 2021;267:113865. doi: 10.1016/j.compstruct.2021.113865
  • Murillo G, Leon-Salguero E, Martínez-Alanis PR, et al. Role of aluminum and HMTA in the hydrothermal synthesis of two-dimensional n-doped ZnO nanosheets. Nano Energy. 2019;60:817–826. doi: 10.1016/j.nanoen.2019.04.017
  • Owens DK, Wendt RC. Estimation of the surface free energy of polymer. J Appl Sci. 1969;13(8):1741–1747. doi: 10.1002/app.1969.070130815
  • Kaelble DH. Dispersion-polar surface tension properties of organic solids. J Adhes. 1970;2(2):66–81. doi: 10.1080/0021846708544582
  • Chen H, Cui Y, Liu X, et al. Study on depositing SiO2 nanoparticles on the surface of jute fiber via hydrothermal method and its reinforced polypropylene composites. J Vinyl Addit Technol. 2020;26(1):43–54. doi: 10.1002/vnl.21714
  • Wang X, Cui Y, Xu Q, et al. Effects of alkali and silane treatment on the mechanical properties of jute-fiber-reinforced recycled polypropylene composites. J Vinyl Addit Technol. 2010;16(3):183–188. doi: 10.1002/vnl.20230
  • Wang X, Chang L, Shi X, et al. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials. 2019;12(9):1386. doi: 10.3390/ma12091386
  • Dong Z, Li N, Chu T, et al. High-quality natural fibers from cotton stalk bark via limited alkali penetration and simultaneous accelerated temperature rise. Materials. 2022;15(2):422. doi: 10.3390/ma15020422
  • Ding J, Wang H, Dong Z. A new strategy for reducing the strength loss of degummed cotton stalk fibers using cationic modification as a pretreatment. Fiber Polym. 2023;24(7):2305–2314. doi: 10.1007/s12221-023-00232-6
  • Mariano M, Cercená R, Soldi V. Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind Crop Prod. 2016;94:454–462. doi: 10.1016/j.indcrop.2016.09.011
  • Li W, Shi E, Zhong W, et al. Growth mechanism and growth habit of oxide crystals. J Synth Cryst. 1999;203(1–2):186–196. doi: 10.1016/S0022-0248(99)00076-7
  • Arfaoui MA, Dolez PI, Dube M, et al. Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid. Appl Surf Sci. 2017;397:19–29. doi: 10.1016/j.apsusc.2016.11.085
  • Dukhin AS, Goetz PJ, Fang X, et al. Monitoring nanoparticles in the presence of larger particles in liquids using acoustics and electron microscopy. J Colloid Interf Sci. 2010;342(1):18–25. doi: 10.1016/j.jcis.2009.07.001
  • Patterson BA, Sodano HA. Enhanced interfacial strength and UV-shielding of aramid fiber composites through ZnO nanoparticle sizing. ACS Appl Mater Inter. 2016;8(49):33963–3397. doi: 10.1021/acsami.6b07555

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.