122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ferroelectric, dielectric, and EMI attenuation characteristics of BaFe2O4/MWCNTs/epoxy nanocomposites

, , , , & ORCID Icon
Pages 601-619 | Received 09 Sep 2023, Accepted 15 Oct 2023, Published online: 25 Oct 2023

References

  • Zeng J, Xu J. Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation. J Alloys Compd. 2010;493(1–2):L39–L41. doi:10.1016/j.jallcom.2009.12.192
  • Park KY, Han JH, Lee SB, et al. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos Sci Technol. 2009;69(7–8):1271–1278. doi:10.1016/j.compscitech.2009.02.033
  • Wang K, Si N, Zhang YL, et al. First-principles study on magnetoelectric coupling effect of M/BiFeO3 (M= co, fe) multiferroicsuperlattice. Vacuum. 2019;165:105–112. doi:10.1016/j.vacuum.2019.04.009
  • Lin T, Yu H, Wang L, et al. A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J Mater Sci. 2021;56(9):5449–5478. doi:10.1007/s10853-020-05631-1
  • Zhang J, Mingliang M, Yuxin B. et al. A review of epoxy-based composite materials: synthesis, structure and application for electromagnetic wave absorption. J Alloys Compd. 2022;166096:922.
  • Kavitha N, Chandramohan A, Sharma D, et al. Synthesis and microwave absorption studies on 2D graphitic carbon nitride loaded polyaniline/polyvinyl alcohol nanocomposites. High Perform Polym. 2023;35(4):324–337. doi: 10.1177/09540083221134955
  • Lei Y, Wang W, Tan G, et al. Effects of dysprosium substitution on the structure, magnetic properties and microwave absorption properties of Z-type hexaferrite Ba3Co2Fe24O41 synthesized by the sol–gel method. J Mater Res Technol. 2022;20:1603–1615. doi: 10.1016/j.jmrt.2022.07.112
  • Bheema RK, Ojha AK, Praveen Kumar AV, et al. Synergistic influence of barium hexaferrite nanoparticles for enhancing the EMI shielding performance of GNP/epoxy nanocomposites. J Mater Sci. 2022;57(19):8714–8726. doi:10.1007/s10853-022-07214-8
  • Biswas S, Kar GP, Bose S. Simultaneous improvement in structural properties and microwave shielding of polymer blends with carbon nanotubes. ChemNanomat. 2016;2(2):140–148. doi:10.1002/cnma.201500159
  • Rosdi N, Azis RAS, Ismail I, et al. Structural, microstructural, magnetic and electromagnetic absorption properties of spiraled multiwalled carbon nanotubes/barium hexaferrite (MWCNTs/BaFe12O19) hybrid. Sci Rep. 2021;11(1):1–14. doi:10.1038/s41598-021-95332-9
  • Fan H, Yao Z, Zhou J, et al. Enhanced microwave absorption of epoxy composite by constructing 3D co–C–MWCNTs derived from metal organic frameworks. J Mater Sci. 2021;56(2):1426–1442. doi:10.1007/s10853-020-05365-0
  • Zhao P, Li L, Luo Y, et al. Effect of blend ratio on the morphology and electromagnetic properties of nanoparticles incorporated natural rubber blends. Composites. 2016;99:216–223. doi:10.1016/j.compositesb.2016.06.017
  • Yu C, Zhu S, Xing C, et al. Fe nanoparticles and CNTs co-decorated porous carbon/graphene foam composite for excellent electromagnetic interference shielding performance. J Alloys Compd. 2020;820:153108. doi:10.1016/j.jallcom.2019.153108
  • Biswas S, Panja SS, Bose S. Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. J Mater Chem C. 2018;6(13):3120–3142. doi:10.1039/C8TC00002F
  • Sankaran S, Deshmukh K, Ahamed MB, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part Appl Sci Manuf. 2018;114:49–71. doi:10.1016/j.compositesa.2018.08.006
  • Kumar P, Narayan Maiti U, Sikdar A, et al. Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polymer Rev. 2019;59(4):687–738. doi:10.1080/15583724.2019.1625058
  • Deeraj BDS, Jayan JS, Raman A, et al. Polymeric blends and nanocomposites for high performance EMI shielding and microwave absorbing applications. Compos Interfaces. 2022;29(13):1–43. doi: 10.1080/09276440.2022.2068245
  • Afghahi SSS, Jafarian M, Atassi Y. A promising lightweight multicomponent microwave absorber based on doped barium hexaferrite/calcium titanate/multiwalled carbon nanotubes. J Nanopart Res. 2016;18(7):192. doi:10.1007/s11051-016-3499-6
  • Sun G, Dong B, Cao M, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and fe with high performance of microwave absorption. Chem Mater. 2011;23(6):1587–1593. doi:10.1021/cm103441u
  • Iqbal S, Kotnala G, Shah J, et al. Barium ferrite nanoparticles: a highly effective EMI shielding material. Mater Res Express. 2019;6(5):055018. doi:10.1088/2053-1591/ab02a4
  • Ting T-H, Wu K-H. Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J Magn Magn Mater. 2010;322(15):2160–2166. doi:10.1016/j.jmmm.2010.02.002
  • Yakovenko OS, Matzui LY, Vovchenko LL, et al. Electromagnetic properties of carbon nanotube/BaFe12− xGaxo19/epoxy composites with random and oriented filler distributions. Nanomaterials. 2021;11(11):287322. doi:10.3390/nano11112873
  • Mishra S, Pratap V, Chaurasia AK, et al. Combined effect of exfoliated graphite/ferrite filled epoxy composites on microwave absorbing and mechanical properties. Physics Open. 2023;14:100138. doi:10.1016/j.physo.2023.100138
  • Chandra RJ, Shivamurthy B, Kulkarni SD, et al. Hybrid polymer composites for EMI shielding application-a review. Mater Res Express. 2019;6(8):082008. doi: 10.1088/2053-1591/aaff00
  • Rengaswamy K, Asapu VK, Muthukaruppan A, et al. Enhanced shielding of electromagnetic radiations with flexible, light‐weight, and conductive Ag‐Cu/MWCNT/rGO architected PVDF nanocomposite films. Polym Adv Technol. 2021;32(9):3759–3769. doi: 10.1002/pat.5395
  • Nikmanesh H, Moradi M, Bordbar GH, et al. Synthesis of multi-walled carbon nanotube/doped barium hexaferrite nanocomposites: an investigation of structural, magnetic and microwave absorption properties. Ceram Int. 2016;42(13):14342–14349. doi: 10.1016/j.ceramint.2016.05.089
  • Zhao T, Jin W, Xianglin J, et al. Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties. J Alloys Compd. 2017;712:59–68.
  • Mousavi SR, Estaji S, Paydayesh A, et al. A review of recent progress in improving the fracture toughness of epoxy‐based composites using carbonaceous nanofillers. Polym Composites. 2022;43(4):1871–1886. doi:10.1002/pc.26518
  • Ogbonna VE, Popoola API, Popoola OM. A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications. Polym Bull. 2022;80(4):1–39. doi: 10.1007/s00289-022-04249-4
  • Dwivedi UK, Kumari N. Foundation of composites. In: Kunal P, editor. Advances in biomedical polymers and composites. Oxford UK: Elsevier; 2023. p. 31–60.
  • Yakovenko OS, Matzui LY, Vovchenko LL, et al. Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J Mater Sci. 2017;52(9):5345–5358. doi: 10.1007/s10853-017-0776-4
  • Tan X, Yuan Q, Qiu M, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review. J Mater Sci Technol. 2022;117:238–250. doi: 10.1016/j.jmst.2021.10.052
  • Cullity BD. Elements of X-ray diffraction. Massachusetts (USA): Addison-Wesley Publishing; 1956.
  • Dwivedi UK, Kumari M, Khan M, et al. Effect of concentration on lattice strain, dielectric properties and activation energy of CoFe2O4/BaTiO3 nanocomposites. Appl Phys A. 2021;127(6):431. doi:10.1007/s00339-021-04577-8
  • Kumari N, Meena S, Rathore D, et al. Study of dielectric properties of CaCu3Ti4O12 synthesized via different routes: Effect of sintering temperature,Ceramics International. 2022;49(2):2549–2556.
  • Pawar H, Khan M, Mitharwal C, et al. Co 1− x Ba x Fe 2 O 4 (x= 0, 0.25, 0.5, 0.75 and 1) nanoferrites as gas sensor towards NO 2 and NH 3 gases. RSC Adv. 2020;10(58):35265–35272. doi: 10.1039/D0RA04303F
  • Shejkar SK, Agrawal B, Agrawal A. Effect of particle size on physical properties of epoxy composites filled with micro-size walnut shell particulates. Mater Today Proc. 2021;47:2657–2661. doi: 10.1016/j.matpr.2021.02.520
  • Leclerc JS, Ruiz E. Porosity reduction using optimized flow velocity in resin transfer molding. Compos Part A Appl Sci Manuf. 2008;39(12):1859–1868. doi: 10.1016/j.compositesa.2008.09.008
  • Li Z, Yu J, Hao S, et al. Enhancing properties of lead-free ferroelectric BaTiO3 through doping. J Eur Ceram Soc. 2022;42(12):4693–4701. doi:10.1016/j.jeurceramsoc.2022.05.023
  • Yang L, Cheng M, Lyu W, et al. Tunable piezoelectric performance of flexible PVDF based nanocomposites from MWCNTs/graphene/MnO2 three-dimensional architectures under low poling electric fields. Compos Part A Appl Sci Manuf. 2018;107:536–544. doi:10.1016/j.compositesa.2018.02.004
  • Singh P, Borkar H, Singh BP, et al. Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP Adv. 2014;4(8). doi: 10.1063/1.4892961
  • Ghosh SK, Perla VK, Mallick K. Enhancement of dielectric and electric-field-induced polarization of bismuth fluoride nanoparticles within the layered structure of carbon nitride. Sci Rep. 2020;10(1):14835. doi:10.1038/s41598-020-71953-4
  • Durán A, Tiznado H, Romo-Herrera JM, et al. Nanocomposite YCrO3/Al2O3: characterization of the core–shell, magnetic properties, and enhancement of dielectric properties. Inorg Chem. 2014;53(10):4872–4880. doi:10.1021/ic4029589
  • Rawat M, Yadav KL. Structural, dielectric, ferroelectric and magnetic properties of (x) CoFe 2 O 4-(1-x) BaTiO 3 composite. IEEE Trans Dielectr Electr Insul. 2015;22(3):1462–1469. doi:10.1109/TDEI.2015.7116338
  • Liu ZD, Feng Y, Li WL. High dielectric constant and low loss of polymeric dielectric composites filled by carbon nanotubes adhering BaTiO3 hybrid particles. RSC Adv. 2015;5(37):29017–29021. doi: 10.1039/C5RA00639B
  • Meena S, Kumari N, Mitra S, et al. Dielectric study of CoFe2O4/MWCNT/epoxy nanocomposites: effect of temperature, concentration and irradiation. Polym Compos. 2023;44(7):3789–3797. doi: 10.1002/pc.27356
  • Uddin ASMI, Lee D, Cho C, et al. Impact of multi-walled CNT incorporation on dielectric properties of PVDF-BaTiO3 nanocomposites and their energy harvesting possibilities. Coatings. 2022;12(1):77. doi:10.3390/coatings12010077
  • Kumari N, Meena S, Rathore D, et al. Study of dielectric properties of CaCu3Ti4O12 synthesized via different routes: effect of sintering temperature. Ceram Int. 2023;49(2):2549–2556. doi:10.1016/j.ceramint.2022.09.234
  • Chaurasia A, Dwivedi UK, Kumari N, et al. Effect of graded dispersion of SiC particles on dielectric behavior of SiC/Epoxy composite. Silicon. 2023;15(2):913–923. doi:10.1007/s12633-022-02057-z
  • Marouani Y, Massoudi J, Noumi M, et al. Electrical conductivity and dielectric properties of sr doped M-type barium hexaferrite BaFe 12 O 19. RSC Adv. 2021;11(3):1531–1542. doi:10.1039/D0RA09465J
  • Khan MZ, Gul IH, Malik A. Improved electrical properties displayed by mg 2±Substituted Cobalt ferrite nano particles, prepared via co-precipitation route. J Sup conduct Novel Magn. 2020;33(10):3133–3144. doi: 10.1007/s10948-020-05565-4
  • Wong YJ, Hassan J, Hashim M. Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction. J Alloys Compd. 2013;571:138–144. doi:10.1016/j.jallcom.2013.03.123
  • Yu Z, Zeng J, Tang J, et al. High power density at low electric fields in dopamine modified barium titanate based poly (arylene ether nitrile) based composites. J Vinyl AdditTech. 2022;28(1):140–152. doi:10.1002/vnl.21876
  • Narayanasamy K, Sekar SS, Roy D, et al. Synthesis and characterization of Ag/Au-MnO2 nanostructure embedded polyvinylidine difluoride high K nanocomposites. Int J Polym Anal Charact. 2021;26(1):37–46. doi: 10.1080/1023666X.2020.1840864
  • Narayanasamy K, Peethambaram P, Roy D, et al. Enhanced thermal and dielectric properties of porous thin films of graphene, conjugated terpolymer of pyrene/thiophene/heptaldehyde, and polyvinylidene difluoride alloys. Int J Polym Anal Charact. 2023;28(2):139–155. doi: 10.1080/1023666X.2022.2158581
  • Reddy AR, Mohan GR, Boyanov BS, et al. Electrical transport properties of zinc-substituted cobalt ferrites. Mater Lett. 1999;39(3):153–165. doi: 10.1016/S0167-577X(98)00234-1
  • Ravinder D, Reddy AC, Shalini P. High-temperature electrical conductivity of Li–ge ferrites. J Alloys Compd. 2003;360(1–2):30–33. doi: 10.1016/S0925-8388(03)00337-2
  • Ahmed I, Jan R, Khan AN, et al. Graphene-ferrites interaction for enhanced EMI shielding effectiveness of hybrid polymer composites. Mater Res Express. 2020;7(1):016304. doi:10.1088/2053-1591/ab62ed
  • Wang JH, Wu RZ, Jing FENG, et al. Recent advances of electromagnetic interference shielding mg matrix materials and their processings: a review. Trans Nonferrous Met Soc China. 2022;32(5):1385–1404. doi:10.1016/S1003-6326(22)65881-3
  • Vaid K, Chaurasia A, Rathore D, et al. Study of dielectric and electromagnetic shielding behaviour of BaTiO3‐CoFe2O4 filled LDPE composite. Polym Composites. 2021;42(2):819–827. doi:10.1002/pc.25867
  • Alegaonkar AP, Baskey HB, Alegaonkar PS. Microwave scattering parameters of ferro–nanocarbon composites for tracking range countermeasures. Mater Adv. 2022;3(3):1660–1672. doi:10.1039/D1MA00977J
  • Yin Z, Tian B, Zhu Q, et al. Characterization and application of PVDF and its copolymer films prepared by spin-coating and Langmuir–Blodgett method. Polymers. 2019;11(12):2033. doi:10.3390/polym11122033
  • Akhterov MV. Microwave absorption in nanostructures [ thesis]. Santa Cruz: University of California; 2010
  • Phan CH, Mariatti M, Koh YH. Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J Magn Magn Mater. 2016;401:472–478. doi:10.1016/j.jmmm.2015.10.067
  • Rengaswamy K, Sakthivel DK, Muthukaruppan A, et al. Electromagnetic interference (EMI) shielding performance of lightweight metal decorated carbon nanostructures dispersed in flexible polyvinylidene fluoride films. New J Chem. 2018;42(15):12945–12953. doi: 10.1039/C8NJ02460J
  • Kumaran R, Kumar SD, Balasubramanian N, et al. Enhanced electromagnetic interference shielding in a Au–MWCNT composite nanostructure dispersed PVDF thin films. J Phys Chem C. 2016;120(25):13771–13778. doi: 10.1021/acs.jpcc.6b01333
  • Dinakaran K, Narayanasamy K, Theerthagiri S, et al. Microwave absorption and dielectric behavior of lead sulfide–graphene composite nanostructure embedded polyvinylidinedilfuoride thin films. Int J Polym Anal Charact. 2022;27(5):277–288. doi: 10.1080/1023666X.2022.2067958
  • Gayathri T, Kavitha N, Chandramohan A, et al. Mesoporous zirconia nanostructures embedded polyvinyledine difluoride conducting films for EMI shielding applications. Mater Today Proc. 2022;59:534–539. doi: 10.1016/j.matpr.2021.11.564
  • Anum R, Zahid M, Siddique S, et al. PVC based flexible nanocomposites with the incorporation of polyaniline and barium hexa-ferrite nanoparticles for the shielding against EMI, NIR, and thermal imaging cameras. Synth Met. 2021;277:116773. doi:10.1016/j.synthmet.2021.116773
  • Sankaran S, Deshmukh K, Ahamed MB, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A Appl Sci Manuf. 2018;114:49–71. doi:10.1016/j.compositesa.2018.08.006
  • Verma S, Dhangar M, Mili M, et al. Review on engineering designing of electromagnetic interference shielding materials using additive manufacturing. Polym Composites. 2022;43(7):4081–4099. doi:10.1002/pc.26684
  • Verma S, Dwivedi U, Chaturvedi K, et al. Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: a review. Synth Met. 2022;287:117095. doi:10.1016/j.synthmet.2022.117095
  • Wu Y, Shu R, Li Z, et al. Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites. J Alloys Compd. 2019;784:887–896. doi:10.1016/j.jallcom.2019.01.139

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.