91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of explosive welding on the interface characteristics of S32750/Q245R composite plate

, , , , , & show all
Pages 621-640 | Received 04 Sep 2023, Accepted 19 Oct 2023, Published online: 26 Oct 2023

References

  • Geng S, Sun J, Guo L, et al. Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA-welding joint. J Manuf Processes. 2015;19:32–37. doi: 10.1016/j.jmapro.2015.03.009
  • Korra NN, Vasudevan M, Balasubramanian KR. Multi-objective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology. Int J Adv Manuf Technol. 2014;77(1–4):67–81. doi: 10.1007/s00170-014-6426-y
  • Silverstein R, Eliezer D. Hydrogen trapping mechanism of different duplex stainless steels alloys. J Alloys Compd. 2015;644:280–286. doi: 10.1016/j.jallcom.2015.04.176
  • Gou N-N, Zhang J-X, Zhang L-J, et al. Single pass fiber laser butt welding of explosively welded 2205/X65 bimetallic sheets and study on the properties of the welded joint. Int J Adv Manuf Technol. 2016;86(9–12):2539–2549. doi: 10.1007/s00170-015-8335-0
  • Chen X, Inao D, Tanaka S, et al. Explosive welding of al alloys and high strength duplex stainless steel by controlling energetic conditions. J Manuf Processes. 2020;58:1318–1333. doi: 10.1016/j.jmapro.2020.09.037
  • Francis R, Byrne G. Duplex stainless steels—alloys for the 21st Century. Metals. 2021;11(5): doi: 10.3390/met11050836
  • Zhang T, Wang W, Yan Z, et al. Interfacial morphology and bonding mechanism of explosive weld joints. Chin J Mech Eng. 2021;34(1). doi: 10.1186/s10033-020-00495-7
  • Findik F. Recent developments in explosive welding. Mater Design. 2011;32(3):1081–1093. doi: 10.1016/j.matdes.2010.10.017
  • Kacar R, Acarer M. An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel. J Mater Process Technol. 2004;152(1):91–96. doi: 10.1016/j.jmatprotec.2004.03.012
  • Acarer M, Gülenç B, Findik F. Investigation of explosive welding parameters and their effects on microhardness and shear strength. Mater Design. 2003;24(8):659–664. doi: 10.1016/s0261-3069(03)00066-9
  • Acarer M, Demir B. An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel. Mater Lett. 2008;62(25):4158–4160. doi: 10.1016/j.matlet.2008.05.060
  • Akbari Mousavi SAA, Farhadi Sartangi P. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Design. 2009;30(3):459–468. doi: 10.1016/j.matdes.2008.06.016
  • Akbari Mousavi SAA, Sartangi PF. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite. Mater Sci Eng A. 2008;494(1–2):329–336. doi: 10.1016/j.msea.2008.04.032
  • Ashani JZ, Bagheri SM. Explosive scarf welding of aluminum to copper plates and their interface properties. Materialwissenschaft und Werkstofftechnik. 2009;40(9):690–698. doi: 10.1002/mawe.200900415
  • Durgutlu A, Gülenç B, Findik F. Examination of copper/stainless steel joints formed by explosive welding. Mater Design. 2005;26(6):497–507. doi: 10.1016/j.matdes.2004.07.021
  • Ghanadzadeh A, Darviseh A. Shock loading effect on the corrosion properties of low-carbon steel. Materials Chemistry & Physics. 2003;82(1):78–83. doi: 10.1016/s0254-0584(03)00166-4
  • Grignon F, Benson D, Vecchio KS, et al. Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int J Impact Eng. 2004;30(10):1333–1351. doi: 10.1016/j.ijimpeng.2003.09.049
  • Raghukandan K. Analysis of the explosive cladding of cu–low carbon steel plates. J Mater Process Technol. 2003;139(1–3):573–577. doi: 10.1016/s0924-0136(03)00539-9
  • FAMAS BC. An experimental investigation of explosive welding parameters. High-Pressure Science and Technology; 1979. pp. 805–813 doi: 10.1007/978-1-4684-7470-1_223
  • BAHRANI AS, Black TJ, CROSSLAND B. The mechanics of wave formation in explosive welding. Proc R Soc London-Series A. 1967;296:123–136. doi: 10.2307/2415515
  • Akbarimousavi A, Alhassani S. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. J Mech Phys Solids. 2005;53(11):2501–2528. doi: 10.1016/j.jmps.2005.06.001
  • Li XJ, Mo F, Wang XH, et al. Numerical study on mechanism of explosive welding. Sci Tec Weld Joining. 2013;17(1):36–41. doi: 10.1179/1362171811y.0000000071
  • Jaramillov D, IOT SA. Effect of base plate thickness on wave size and wave morphology in explosively welded couples. J Mater Sci. 1987;22(9):3143–3147. doi: 10.1007/BF01161175
  • Zhang ZL, Liu MB. Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Processes. 2019;41:208–220. doi: 10.1016/j.jmapro.2019.03.039
  • Kaçar R, Acarer M. Microstructure–property relationship in explosively welded duplex stainless steel–steel. Mater Sci Eng A. 2003;363(1–2):290–296. doi: 10.1016/s0921-5093(03)00643-9
  • Zhang L-J, Pei Q, Zhang J-X, et al. Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet. Mater Design. 2014;64:462–476. doi: 10.1016/j.matdes.2014.08.013
  • Li Y, Wu Z. Microstructural characteristics and mechanical properties of 2205/AZ31B laminates fabricated by explosive welding. Metals. 2017;7(4): doi: 10.3390/met7040125
  • Wang K, Kuroda M, Chen X, et al. Mechanical properties of explosion-welded titanium/duplex stainless steel under different energetic conditions. Metals. 2022;12(8). doi: 10.3390/met12081354
  • Chu Q, Tong X, Xu S, et al. Interfacial investigation of explosion-welded titanium/steel bimetallic plates. J Mater Eng Perform. 2019;29(1):78–86. doi: 10.1007/s11665-019-04535-9
  • Ma Y, Wang T, Wang G, et al. Numerical and experimental studies of the interface characteristics and wave formation mechanism of Hastelloy/stainless steel explosive welding composite plate. Mater Today Commun. 2023;36: doi: 10.1016/j.mtcomm.2023.106880
  • Yang Y, Wang BF, Hu B, et al. The collective behavior and spacing of adiabatic shear bands in the explosive cladding plate interface. Mater Sci Eng A. 2005;398(1–2):291–296. doi: 10.1016/j.msea.2005.03.099
  • Yang YX, ZZ L, Qingyun L. Adiabatic shear band on the titanium side in the Ti mild steel explosive cladding interface. Acta Materialia. 1996;44(2):561–565. doi: 10.1016/1359-6454(95)00200-6
  • Elango E, Saravanan S, Raghukandan K. Experimental and numerical studies on aluminum-stainless steel explosive cladding. J Cent South Univ. 2020;27(6):1742–1753. doi: 10.1007/s11771-020-4404-0
  • Feng J, Liu R, Liu K, et al. Atomistic simulation on the formation mechanism of bonding interface in explosive welding. J Appl Phys. 2022;131(2). doi: 10.1063/5.0069720
  • He Y, Zhang S, Ding Q, et al. Comprehensive investigation of microstructural inhomogeneity in the bonding zone of explosive-welded AISI 410S/A283GrD composite. Compos Interfaces. 2021;29(1):57–77. doi: 10.1080/09276440.2021.1890426
  • Ma Y, Zhang S, Wang T, et al. Atomic diffusion behavior near the bond interface during the explosive welding process based on molecular dynamics simulations. Mater Today Commun. 2022;31: doi: 10.1016/j.mtcomm.2022.103552

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.