418
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Practical ship afterbody optimization by multifidelity techniques

&
Pages 153-170 | Received 15 Feb 2023, Accepted 06 Aug 2023, Published online: 21 Nov 2023

References

  • Adams BM, Bauman LE, Bohnhoff WJ, Dalbey KR, Ebeida MS, Eddy JP, Eldred MS, Hough PD, Hu KT, Jakeman JD, et al. 2015. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.0 user’s manual. Sandia Technical Report SAND2014-4633, July 2014. Updated November 2015.
  • Bigini G, Jacoby M, Steenbergen A, Minerva LF, Villa D, Vernengo G. 2022. Large yacht resistance reduction by hydrodynamic multi-objective shape optimization. Ship Tech Res. doi:10.1080/09377255.2022.2054759.
  • Bonfiglio L, Perdikaris P, Brizzolara S. 2016. Multi-fidelity optimization of high-speed SWATHs. SNAME Maritime Convention, Bellevue, USA.
  • Bonfiglio L, Perdikaris P, Vernengo G, Karniadakis G. 2017. Multi-fidelity Bayesian optimization of SWATH vessels for improving seakeeping performance, SNAME Maritime Convention, Houston, USA.
  • Brizzolara S, Vernengo G, Pasquinucci CA, Harries S. 2015. Significance of parametric hull form definition on hydrodynamic performance optimization. 6th Int. Conf. Comp. methods Marine Engineering, MARINE 2015.
  • Chun HH. 2010. Hull form parametrization technique with local and global optimization algorithms. Int. Conf. Marine Technology, Dhaka, Bangladesh.
  • Crepier P. 2017. Ship resistance prediction – verification and validation exercise on unstructured grids. 7th Int. Conf. Comp. Methods Marine Engineering (MARINE2017), Nantes, France.
  • Feng Y, El Moctar O, Schellin TE. 2021. Parametric hull form optimization of containerships for minimum resistance in calm water and in waves. J Mar Sci Appl. 20:670–693. doi:10.1007/s11804-021-00243-w.
  • Forrester AIJ, Sóbester A, Keane AJ. 2007. Multi-fidelity optimization via surrogate modelling. Proc Royal Soc A. 463(2088):3251–3269.
  • Grigoropoulos GJ, Campana EF, Diez M, Serani A, Gören O, Sariöz K, Dani’sman DB, Visonneau M, Queutey P, Abdel-Maksoud M, Stern F. 2017. Mission-based hull form and propeller optimization of a transom-stern destroyer for best performance in the sea environment. 7th Int. Conf. Comp. Meth. Marine Eng., MARINE 2017.
  • Han S, Lee Y-S, Choi YB. 2012. Hydrodynamic hull form optimization using parametric models. Jnl Mar Sci Technol. 17:1. doi:10.1007/s00773-011-0148-8.
  • Hoekstra M. 1999. Numerical simulation of ship stern flows with a space-marching Navier Stokes method, Dissertation, Delft Univ. Techn.
  • Hoekstra M, Raven HC. 2003. A practical approach to constrained hydrodynamic optimization of ships. NAV 2003 Symp., Palermo, Italy.
  • Kim H, Jeong S, Yang C, Noblesse F. 2011. Hull form design exploration based on the response surface method. 21st ISOPE Conf. Hawaii.
  • Kim H, Yang C. 2010. A new surface modification approach for CFD-based hull form optimization. 9th Int. Conf. Hydrodynamics, Shanghai, China.
  • Liu X, Zhao W, Wan D. 2022. Multi-fidelity Co-Kriging surrogate model for ship hull optimization. Ocean Eng. 243:110239. doi:10.1016/j.oceaneng.2021.110239
  • Pellegrini R, Serani A, Broglia R, Diez M, Harries S. 2018. Resistance and payload optimization of a sea vehicle by adaptive multi-fidelity metamodelling. Paper 2018-1904, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi:10.2514/6.2018-1904
  • Pellegrini R, Serani A, Harries S, Diez M. 2017. Multi-objective hull form optimization of a SWATH configuration via design-space dimensionality reduction, multi-fidelity metamodels and swarm intelligence. MARINE 2017 Conf., Nantes, France.
  • Pereira FS, Eça L, Vaz G. 2017. Verification and validation exercises for the flow around the KVLCC2 tanker at model and full-scale Reynolds numbers. Ocean Eng 129:133–148. doi:10.1016/j.oceaneng.2016.11.005
  • Peri D, Campana EF. 2008. Variable-fidelity and surrogate modelling in simulation-based design. Proc. 27th Symp. Naval Hydrodynamics, Seoul, South-Korea.
  • Peri D, Campana EF, Tahara Y, Takai T, Kandasamy M, Stern F. 2010. New developments in simulation-based design with application to high-speed waterjet ship design. Proc. 28th Symp. Naval Hydrodynamics, Pasadena, USA.
  • Peri D, Kandasamy M, Tahara Y, Wilson W, Miozzi M, Campana EF, Stern F. 2012. Simulation-based design with variable-physics modeling and experimental verification of a waterjet propelled catamaran. Proc. 29th Symp. Naval Hydrodynamics. Gothenburg, Sweden.
  • Raven HC. 1992. A practical nonlinear method for calculating ship wavemaking and wave resistance. Proc. 19th Symp. Naval Hydrodynamics, Seoul, South-Korea.
  • Raven HC. 1996. A solution method for the nonlinear ship wave resistance problem. Dissertation, Delft Univ. Technology, Delft, Netherlands.
  • Raven HC. 2018. Minimising ship afterbody wave making using multifidelity techniques. 32nd Symp. Naval Hydrodynamics, Hamburg, Germany.
  • Raven HC. 2022. Ship hydrodynamics knowhow derived from computational tools: some examples. J Ocean Eng Mar Energy. doi:10.1007/s40722-022-00256-9
  • Raven HC, Scholcz TP. 2017. Wave resistance minimisation in practical ship design. Proc. MARINE 2017, Nantes, France.
  • Raven HC, Scholcz TP. 2019. An assessment of multifidelity procedures for ship hull form optimisation. 8th Int. Conf. Comp. Meth. Marine Eng., Gothenburg,Sweden.
  • Raven HC, Van Brummelen EH. 1999. A new approach to computing steady free-surface viscous flow problems. 1st MARNET-CFD workshop, Barcelona, Spain.
  • Scholcz TP, Gornicz T, Veldhuis C. 2015. Multi-objective hull form optimization using Kriging on noisy computer experiments, 6th Int Conf. Comp. Meth. Marine Eng.
  • Serani A, d’Agostino D, Campana EF, Diez M. 2018. Assessing the interplay of shape and physical parameters by nonlinear dimensionality reduction methods, 32nd Symp. Nav. Hydrodyn., Hamburg, Germany.
  • Serani A, Ficini S, Broglia R, Diez M, Grigoropoulos G, Bakirtzogou C, Papadakis G, Goren O, Danisman DB, Solak HP, et al. 2022. Resistance and seakeeping optimization of a naval destroyer by multi-fidelity methods, NATO STO-TR-AVT-354.
  • Toal DJJ. 2015. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidiscipl Optim. 51(6):1223–1245. doi:10.1007/s00158-014-1209-5
  • Van Brummelen EH, Raven HC, Koren B. 2001. Efficient numerical solution of steady free-surface Navier-Stokes flow. J Comp Phys. 174:120–137. doi:10.1006/jcph.2001.6880
  • Van der Ploeg A, Eça L, Hoekstra M. 2000. Combining accuracy and efficiency with robustness in ship stern flow calculation. Proc. 23rd Symp. Naval Hydrodynamics, Val de Rueil, France.
  • Wackers J, Visonneau M, Serani A, Pellegrini R, Broglia R, Diez M. 2020. Multi-fidelity machine learning from adaptive and multigrid RANS simulations. 33rd Symp. Nav. Hydrodyn., Osaka, Japan.