505
Views
0
CrossRef citations to date
0
Altmetric
Research Letter

Microstructure characteristics in weld zone of the novel thick 08Cr9W3Co3VNbCuBN heat-resistant steel welded joint by fusion welding

, , &
Article: 2221042 | Received 20 Jul 2022, Accepted 29 May 2023, Published online: 27 Jun 2023

References

  • P. Yan, Z.D. Liu, W. Liu, H.S. Bao, and Y.Q. Weng, Hot deformation behavior of a new 9% Cr heat resistant steel G115. J. Iron Steel Res. Int 20 (2013), pp. 73–79.
  • Y.T. Xu, W. Li, M.J. Wang, X.Y. Zhang, Y. Wu, N. Min, W.Q. Liu, and X.J. Jin, Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging. Acta Mater. 175 (2019), pp. 148–159.
  • Z.D. Liu, Z.Z. Chen, X.K. He, and H.S. Bao, Systematical innovation of heat resistant materials ssed for 630∼700°C advanced ultra-supercritical (A-USC) fossil fired boilers. Acta Metall. Sin 56 (2020), pp. 539–548.
  • H. He, L. Yu, C. Liu, H. Li, Q. Gao, and Y. Liu, Research progress of a novel martensitic heat-resistant steel G115. Acta Metall. Sin 58 (2021), pp. 311–323.
  • F. Peñalba, X. Gómez-Mitxelena, J.A. Jiménez, M. Carsí, and O.A. Ruano, Effect of temperature on mechanical properties of 9% Cr ferritic steel. ISIJ Int. 56 (2016), pp. 1662–1667.
  • B. Xiao, L.Y. Xu, L. Zhao, H.Y. Jing, Y.D. Han, and Z.X. Tang, Strain dependent constitutive model and microstructure evolution of a novel 9Cr martensitic steel during high-temperature deformation. Mater. Sci. Eng., A. 756 (2019), pp. 336–345.
  • M.H. Yang, Z. Zhang, and L.P. Li, Evolution of precipitated phases during creep of G115/Sanicro25 dissimilar steel welded joints. Materials. (Basel) 14 (2021), pp. 5018.
  • Z.X. Tang, H.Y. Jing, L.Y. Xu, D.Z. Chi, L. Zhao, Y.D. Han, and Y.L. Gao, Temperature effect on dwell-fatigue crack propagation behavior of novel tempered martensitic ferritic steel G115. Eng. Fract. Mech 237 (2020), pp. 107250.
  • Z. Liu, L. Gong, C. Zhang, Z.D. Liu, and Y.H. Yu, Effect of annealing and cooling rate on toughness of G115 heat-resistant steels. J. Iron Steel Res. Int 29 (2022), pp. 1245–1256.
  • C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava, Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint. J. Manuf. Process 28 (2017), pp. 220–234.
  • C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini, Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater. Sci. Eng., A. 712 (2018), pp. 720–737.
  • C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini, Some studies on P91 steel and their weldments. J. Alloys Compd 743 (2018), pp. 332–364.
  • V.L. Manugula, K.V. Rajulapati, G.M. Reddy, and K.B.S. Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states. Mater. Sci. Eng., A. 698 (2017), pp. 36–45.
  • C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, and A. Srivastava, Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel. Mater. Sci. Eng., A 695 (2017), pp. 291–301.
  • B. Silwal, L. Li, A. Deceuster, and B. Griffiths, Effect of postweld heat treatment on the toughness of heat-affected zone for grade 91 steel. Weld. Res 92 (2013), pp. 80s–87s.
  • C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini, Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater. Sci. Eng., A. 712 (2018), pp. 720–737.
  • G. Dak, and C. Pandey, A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J. Manuf. Process 58 (2020), pp. 377–406.
  • H.Y. Cai, L.Y. Xu, L. Zhao, Y.D. Han, H.N. Pang, and W. Chen, Cold metal transfer plus pulse (CMT + P) welding of G115 steel: mechanisms, microstructure, and mechanical properties. Mater. Sci. Eng., A. 843 (2022), pp. 143156.
  • X.Z. Cong, X.N. Peng, X.K. Peng, T. Wang, Z.Z. Chen, H.F. Jiang, C.Y. Li, and S.Y. Zhang, Heat treatment for G115 large diameter pipe fittings. Heat Treat. Met 46 (2021), pp. 90–95.
  • B. Arivazhagan, G. Srinivasan, S.K. Albert, and A.K. Bhaduri, A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process. Fusion Eng. Des 86 (2011), pp. 192–197.
  • T. Li, X.J. Yuan, R. Li, J.K. Xiong, S.W. Tao, and K.L. Wu, Microstructure and mechanical characteristics of dissimilar TIG welded 9% Cr heat-resistant steels joints. Int. J. Precis. Eng. Man 22 (2021), pp. 1007–1019.
  • J.K. Xiong, T. Li, X.J. Yuan, and J. Xu, Improvement in weldment of dissimilar 9% Cr heat-resistant steels by post-weld heat treatment. Materials. (Basel) 10 (2020), pp. 1321.
  • C. Pandey, M.M. Mahapatra, P. Kumara, and N. Saini, Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments. Mater. Sci. Eng., A. 685 (2017), pp. 39–49.
  • A. Kulkarni, D.K. Dwivedi, and M. Vasudevan, Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 steel-P22 steel dissimilar metal joint. Mater. Sci. Eng., A. 731 (2018), pp. 309–323.
  • S. Sirohi, A. Kumar, S. Soni, G. Dak, S. Kumar, A. Świerczyńska, G. Rogalski, D. Fydrych, and C. Pandey, Influence of PWHT parameters on the mechanical properties and microstructural behavior of multi-pass GTAW joints of P92 steel. Materials. (Basel) 15 (2022), pp. 4045.
  • P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu, Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel. Mater. Des 54 (2014), pp. 874–879.