367
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of the effect of dual-phase transformation on the processing map of Al0.9FeCoNiCr high-entropy alloys under peak stress conditions

, , , , , , & show all
Article: 2261392 | Received 19 Feb 2023, Accepted 15 Sep 2023, Published online: 22 Dec 2023

References

  • J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (2004), pp. 299–303.
  • U.S. Hsu, U.D. Hung, J.W. Yeh, S.K. Chen, Y.S. Huang, and C.C. Yang, Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Mater. Sci. Eng. A. 460-461 (2007), pp. 403–408.
  • C.M. Lin, and H.L. Tsa, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics. 19 (2011), pp. 288–294.
  • J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn highentropy alloy system. Acta Mater. 62 (2014), pp. 105–113.
  • Z. Fu, W. Chen, H. Wen, Z. Chen, and E.J. Lavernia, Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys. Compd. 646 (2015), pp. 175–182.
  • Y.F. Kao, T.D. Lee, S.K. Chen, and Y.S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52 (2010), pp. 1026–1034.
  • Z. Lei, X. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 563 (2018), pp. 546–550.
  • W.R. Wang, W.L. Wang, and J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloy Compd. 589 (2014), pp. 143–152.
  • M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater. 72 (2014), pp. 5–8.
  • Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119 (2017), pp. 33–45.
  • Y.Z. Shi, L. Collins, N. Balke, P.K. Liaw, and B. Yang, In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution. Appl. Surf. Sci. 439 (2018), pp. 533–544.
  • W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 26 (2012), pp. 44–51.
  • J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear. 428-429 (2019), pp. 32–44.
  • D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy. 16 (2014), pp. 494–525.
  • J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102 (2016), pp. 187–196.
  • V. Ocelík, N. Janssen, S.N. Smith, and J.T.M. De Hosson, Additive manufacturing of high-entropy alloys by laser processing. JOM. 68 (2016), pp. 1810–1818.
  • J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A. 633 (2015), pp. 184–193.
  • M. Liu, Y. Tian, Y. Wang, K. Wang, K. Zhang, and S. Lu, Critical conditions for dynamic recrystallization of S280 ultra-high-strength stainless steel based on work hardening rate. Metals. (Basel). 12 (2022), p. 1123.
  • Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Mater. Trans. A. 15 (1984), pp. 1883–1892.
  • S. Samal, M.R. Rahul, R.S. Kottada, and G. Phanikumar, Hot deformation behaviour and processing map of Co-Cu-Fe-Ni-Ti eutectic high entropy alloy. Mater. Sci. Eng. A. 664 (2016), pp. 227–235.
  • F. Dong, Y. Yuan, W. Li, P.K. Liaw, X. Yuan, and H. Huang, Hot deformation behavior and processing maps of an equiatomic MoNbHfZrTi refractory high entropy alloy. Intermetallics. 128 (2020), p. 106921.
  • Y.V.R.K. Prasad, and T. Seshacharyulu, Processing maps for hot working of titanium alloys. Mater. Sci. Eng. A. 243 (1998), pp. 82–88.
  • H. Ziegler, Progress in solid mechanics, Wiley, New York, 1963.
  • Q. Ju, D. Li, and G. Liu, The processing map of hot plastic deformation of a 15Cr-25Ni-Fe base superalloy. Acta Metall. Sin. 42 (2006), pp. 218–224.
  • Y.V.R.K. Prasad, Processing maps: A status report. J. Mater. Eng. Perform. 12 (2003), pp. 638–645.