619
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in hydrogen states after interactions between hydrogen and stress-induced martensite transformation for Ni–Ti superelastic alloy

&
Article: 2266466 | Received 03 Apr 2023, Accepted 15 Sep 2023, Published online: 28 Oct 2023

References

  • K. Yokoyama, T. Eguchi, K. Asaoka, and M. Nagumo, Effect of constituent phase of Ni–Ti shape memory alloy on susceptibility to hydrogen embrittlement. Mater. Sci. Eng. A. 374 (2004), pp. 177–183.
  • K. Yokoyama, M. Tomita, and J. Sakai, Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni–Ti superelastic alloy. Acta Mater. 57 (2009), pp. 1875–1885.
  • K. Yokoyama, Y. Hirata, T. Inaba, K. Mutoh, and J. Sakai, Strong interactions between hydrogen in solid solution and stress-induced martensite transformation of Ni–Ti superelastic alloy. Philos. Mag. Lett. 97 (2017), pp. 11–18.
  • K. Yokoyama, Y. Hirata, and J. Sakai, First interactions between hydrogen and stress-induced reverse transformation of Ni–Ti superelastic alloy. Philos. Mag. Lett. 97 (2017), pp. 459–468.
  • P.R. Okamoto, J.K. Heuer, N.Q. Lam, S. Ohnuki, Y. Matsukawa, K. Tozawa, and J.F. Stubbins, Stress-induced amorphization at moving crack tips in NiTi. Appl. Phys. Lett. 73 (1998), pp. 473–475.
  • K. Gall, and H.J. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 50 (2002), pp. 4643–4657.
  • T. Simon, A. Kröger, C. Somsen, A. Dlouhy, and G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater. 58 (2010), pp. 1850–1860.
  • N. Yamaguchi, and K. Yokoyama, Degradation caused by self-multiplication of damage induced by an interplay between hydrogen and the martensite transformation in a Ni–Ti superelastic alloy. Philos. Mag. Lett. 102 (2022), pp. 60–70.
  • S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys. Metall. Trans. A. 17 (1986), pp. 115–120.
  • G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A. 378 (2004), pp. 24–33.
  • R. Delville, B. Malard, J. Pilch, P. Šittner, and D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int. J. Plasticity. 27 (2011), pp. 282–297.
  • R. Sidharth, J.C. Stinville, and H. Sehitoglu, Fatigue and fracture of shape memory alloys in the nanoscale: An in-situ TEM study. Scripta Mater. 234 (2023), p. 115577.
  • K. Yokoyama, Y. Hirata, and J. Sakai, After-effects induced by interactions between hydrogen and the martensite transformation in Ni–Ti superelastic alloy. Philos. Mag. Lett. 97 (2017), pp. 350–358.
  • T. Duerig, O. Shelley, D. Madamba, and L. Vien, A practitioner’s perspective of hydrogen in Ni–Ti alloys. Shap. Mem. Superelasticity. 5 (2019), pp. 255–248.
  • K. Yokoyama, T. Ogawa, K. Takashima, K. Asaoka, and J. Sakai, Hydrogen embrittlement of Ni–Ti superelastic alloy aged at room temperature after hydrogen charging. Mater. Sci. Eng. A. 466 (2007), pp. 106–113.
  • K. Yokoyama, M. Tomita, K. Asaoka, and J. Sakai, Hydrogen absorption and thermal desorption behaviors of Ni–Ti superelastic alloy subjected to sustained tensile-straining test with hydrogen charging. Scripta Mater. 57 (2007), pp. 393–396.
  • M. Tomita, K. Yokoyama, K. Asaoka, and J. Sakai, Hydrogen thermal desorption behavior of Ni–Ti superelastic alloy subjected to tensile deformation after hydrogen charging. Mater. Sci. Eng. A. 476 (2008), pp. 308–315.
  • R. Sarraj, W.E. Letaief, T. Hassine, F. Gamaoun, and M.H. El Ouni, Modeling of hydrogen diffusion towards a NiTi arch wire under cyclic loading. Met. Mater. Int. 27 (2021), pp. 413–424.
  • T. Doshida, and K. Takai, Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Mater. 79 (2014), pp. 93–107.
  • M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer Nature, Singapore, 2016.
  • R. Hayashi, and K. Yokoyama, Characterization of hydrogen thermal desorption behavior and enhancement of hydrogen embrittlement in Ni–Ti superelastic alloy induced by cathodic hydrogen charging in the presence of chloride ions. Shap. Mem. Superelasticity. 9 (2023), pp.520–530.
  • D. Noréus, P.-E. Werner, K. Alasafi, and E. Schmidtihn, Structural studies of TiNiH. Int. J. Hydrogen Eng. 10 (1985), pp. 547–550.
  • J.L. Soubeyroux, D. Fruchart, G. Lorthioir, P. Ochin, and D. Colin, Structural study of the hydrides NiTiHx (X = 1.0 and 1.4). J. Alloys Compd. 196 (1993), pp. 127–132.
  • C.-C. Leu, D. Vokoun, and C.-T. Hu, Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall. Mater. Trans. A. 33 (2002), pp. 17–23.
  • K. Yokoyama, Y. Hirata, T. Inaba, K. Mutoh, and J. Sakai, Inhibition of localized corrosion of Ni–Ti superelastic alloy in NaCl solution by hydrogen charging. J. Alloys Compd. 639 (2015), pp. 365–372.
  • R. Schmidt, M. Schlereth, H. Wipf, W. Assmus, and M. Müllner, Hydrogen solubility and diffusion in the shape-memory alloy NiTi. J. Phys. Condens. Matter. 1 (1989), pp. 2473–2482.
  • Z. Li, F. Xiao, X. Liang, H. Chen, Z. Li, X. Jin, and T. Fukuda, Effect of hydrogen doping on stress-induced martensitic transformation in a Ti-Ni shape memory alloy. Metall. Mater. Trans. A. 50 (2019), pp. 3033–3037.
  • K. Yokoyama, S. Watabe, K. Hamada, J. Sakai, K. Asaoka, and M. Nagumo, Susceptibility to delayed fracture of Ni–Ti superelastic alloy. Mater. Sci. Eng. A. 341 (2003), pp. 91–97.
  • A. Baturin, A. Lotkov, V. Grishkov, I. Rodionov, Y. Kabdylkakov, and V. Kudiiarov, The effect of hydrogen on martensite transformations and the state of hydrogen atoms in binary TiNi-based alloy with different grain sizes. Materials. (Basel). 12 (2019), p. 3956.
  • F. Gamaoun, Strain rate effect upon mechanical behaviour of hydrogen-charged cycled NiTi shape memory alloy. Materials. (Basel). 14 (2021), p. 4772.
  • G. Fan, K. Otsuka, X. Ren, and F. Yin, Twofold role of dislocations in the relaxation behavior of Ti–Ni martensite. Acta Mater. 56 (2008), pp. 632–641.
  • F. Gamaoun, T. Hassine, and T. Bouraoui, Strain rate response of a Ni–Ti shape memory alloy after hydrogen charging. Philos. Mag. Lett. 94 (2014), pp. 30–36.
  • F. Sun, L. Jordan, A.D. Silva, F. Martin, and F. Prima, Revisiting the effects of low-concentration hydrogen in NiTi self-expandable stents. Mater. Sci. Eng. C. 118 (2021), p. 111405.
  • H.M. Jiang, C. Yu, Q. Kan, B. Xu, C. Ma, and G. Kang, Effect of hydrogen on super-elastic behavior of NiTi shape memory alloy wires: Experimental observation and diffusional-mechanically coupled constitutive model. J. Mech. Behav. Biomed. Mater. 132 (2022), pp. 105276.
  • J.A. Shaw, and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45 (1997), pp. 683–700.
  • K. Yokoyama, A. Nagaoka, and J. Sakai, Effects of the hydrogen absorption conditions on the hydrogen embrittlement behavior of Ni–Ti superelastic alloy. ISIJ Int. 52 (2012), pp. 255–262.