269
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A generalised FK model for the 558 line defect in graphene

, , & ORCID Icon
Article: 2293005 | Received 13 Jun 2023, Accepted 27 Nov 2023, Published online: 22 Dec 2023

References

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004), pp. 666–669. doi:10.1126/science.1102896
  • N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nat. Nanotechnol. 13 (2018), pp. 246–252. doi:10.1038/s41565-017-0035-5
  • K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, J. Mater. Chem. C 5 (2017), pp. 11992–12022. doi:10.1039/C7TC04300G
  • S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2 (2017), pp. 17033. doi:10.1038/natrevmats.2017.33
  • A. Khandelwal, K. Mani, M.H. Karigerasi, and I. Lahiri, Phosphorene – the two-dimensional black phosphorous: properties, synthesis and applications, Mater. Sci. Eng. B 221 (2017), pp. 17–34. doi:10.1016/j.mseb.2017.03.011
  • F. Bechstedt, P. Gori, and O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene, Prog. Surf. Sci. 96 (2021), pp. 100615. doi:10.1016/j.progsurf.2021.100615
  • X. Zou and B.I. Yakobson, An open canvas – 2D materials with defects, disorder, and functionality, Acc. Chem. Res. 48 (2015), pp. 73–80. doi:10.1021/ar500302q
  • M.D. Bhatt, H. Kim, and G. Kim, Various defects in graphene: a review, RSC Adv. 12 (2022), pp. 21520–21547. doi:10.1039/D2RA01436J
  • D. Gunlycke, S. Vasudevan, and C.T. White, Confinement, transport gap, and valley polarization in graphene from two parallel decorated line defects, Nano. Lett. 13 (2013), pp. 259–263. doi:10.1021/nl304015q
  • D. Ghosh, P. Parida, and S.K. Pati, Stable line defects in silicene, Phys. Rev. B 92 (2015), pp. 195136. doi:10.1103/PhysRevB.92.195136
  • D. Gunlycke and C.T. White, Graphene valley filter using a line defect, Phys. Rev. Lett. 106 (2011), pp. 136806. doi:10.1103/PhysRevLett.106.136806
  • H. Tian, C. Ren, and S. Wang, Valleytronics in two-dimensional materials with line defect, Nanotechnology 33 (2022), pp. 212001. doi:10.1088/1361-6528/ac50f2
  • J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, and M. Batzill, An extended defect in graphene as a metallic wire, Nat. Nanotechnol. 5 (2010), pp. 326–329. doi:10.1038/nnano.2010.53
  • J. Frenkel and T. Kontorova, The Frenkel-Kontorova model: Concepts, methods, and applications, Phys. Z. Sowietunion 13 (1938), pp. 1.
  • J. Frenkel and T. Kontorova, On the theory of plastic deformation and twinning, J. Phys.(Moscow) 1 (1939), pp. 137–149.
  • T. Kontorova and J. Frenkel, On the theory of plastic deformation and twinning. II, Zh. Eksp. Teor. Fiz. 8 (1938), pp. 1340–1348.
  • T. Kontorova and J. Frenkel, On the theory of plastic deformation and twinning. III, Zh. Eksp. Teor. Fiz. 8 (1938), pp. 1349–1358.
  • O.M. Braun and Y.S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306 (1998), pp. 1–108. doi:10.1016/S0370-1573(98)00029-5
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50. doi:10.1016/0927-0256(96)00008-0
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186. doi:10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi:10.1103/PhysRevLett.77.3865
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999), pp. 1758–1775. doi:10.1103/PhysRevB.59.1758
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192. doi:10.1103/PhysRevB.13.5188
  • K.H. Michel and B. Verberck, Theory of the evolution of phonon spectra and elastic constants from graphene to graphite, Phys. Rev. B 78 (2008), pp. 085424. doi:10.1103/PhysRevB.78.085424
  • X. Wei, B. Fragneaud, C.A. Marianetti, and J.W. Kysar, Nonlinear elastic behavior of graphene: ab initio calculations to continuum description, Phys. Rev. B 80 (2009), pp. 205407. doi:10.1103/PhysRevB.80.205407
  • H.L. Zhang, S.F. Wang, R. Wang, and J. Jiao, The dislocations in graphene with the correction from lattice effect, Eur. Phys. J. B 73 (2010), pp. 489–493. doi:10.1140/epjb/e2010-00019-4
  • S. Wang, Y. Yao, and R. Wang, A lattice theory of the Stone-Wales defect as dipole of dislocation and anti-dislocation, Eur. Phys. J. B 88 (2015), pp. 226.