188
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The stacking sequence optimisation of a filament wound composite bicycle frame using the data-driven evolutionary algorithm EvoDN2

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2347899 | Received 15 Feb 2024, Accepted 19 Apr 2024, Published online: 08 May 2024

References

  • S. Sajan, and D.P. Selvaraj, A review on polymer matrix composite materials and their applications. Mater. Today: Proc. 47 (2021), pp. 5493–5498.
  • I.M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials: Vol. 1994, Oxford university press, New York, 2006.
  • M.A. Maleque, and S. Dyuti, Materials for bicycle frame system–a case study on the development of selection method, 2010.
  • S.E. Cohen, C.T. Graves, E. Bernardon and H. West, Design of a new composite forming process using a formal design methodology. Int. J. Mater. Prod. Technol. 9(1-3) (1994), pp. 23–41.
  • M. Thouin, H. Ghiasi, and L. Lessard, Design of a carbon fiber bicycle stem using a novel internal bladder resin transfer molding technique. Adv. Compos. Lett. 19(1) (2010) pp. 096369351001900105. doi:10.1177/096369351001900105
  • L. Moore, A.K. Alapati, G. Cerniauskas, C. Ó. Brádaigh, E.R. Pineda and C. Robert, Study on sports application of CFRP powder-epoxy towpreg: bike frame manufacturing via filament winding, SAMPE Europe Conference, 2023.
  • J.H.S. Almeida Jr., M. L. Ribeiro, V. Tita and S.C. Amico, Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Compos. Struct. 178 (2017), pp. 20–26. doi:10.1016/j.compstruct.2017.07.054
  • P. Stedile Filho, J. H. S. Almeida Jr. and S.C. Amico, Carbon/epoxy filament wound composite drive shafts under torsion and compression. J. Compos. Mater. 52(8) (2018), pp. 1103–1111. doi:10.1177/0021998317722043
  • J.H.S. Almeida Jr, L. St-Pierre, Z. Wang, M. L. Ribeiro, V. Tita, S. C. Amico and S.G. Castro., et al., Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders. Composites Part B: Engineering, 225 (2021), pp. 109224. doi:10.1016/j.compositesb.2021.109224
  • Z. Wang, J. H. S. Almeida Jr., A. Ashok, Z. Wang and S.G. Castro, Lightweight design of variable-angle filament-wound cylinders combining Kriging-based metamodels with particle swarm optimization. Struct. Multidiscipl. Optim. 65(5) (2022), pp. 140. doi:10.1007/s00158-022-03227-8
  • A. Malá, Z. Padovec, T. Mareš, and N. Chakraborti, Shallow and deep evolutionary neural networks applications in solid mechanics, in Advanced Machine Learning with Evolutionary and Metaheuristic Techniques, J. Valadi, K.P. Singh, M. Ojha, P. Siarry, ed., Springer, Singapore, 2024. doi:10.1007/978-981-99-9718-3_11.pp. 257-296
  • K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1998.
  • B.S. Saini, D. Chakrabarti, N. Chakraborti, B. Shavazipour and K. Miettinen, Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework. Eng. Appl. Artif. Intell. 120 (2023), pp. 105918. doi:10.1016/j.engappai.2023.105918
  • C.A.C. Coello, Evolutionary algorithms for solving multi-objective problems, 2, Springer New York, NY, 2007. doi:10.1007/978-0-387-36797-2
  • N. Chakraborti, Data-Driven Evolutionary Modeling in Materials Technology, CRC Press, Boca Raton, 2023.
  • A. Malá, Z. Padovec, T. Mareš and N. Chakraborti, A method for designing filament-wound composite frame structures using a data-driven evolutionary optimisation algorithm EvoDN2. Philos. Mag. Lett. 103 (2023) pp.2272975 doi:10.1080/09500839.2023.2272975
  • R.M. Jones, Mechanics of Composite Materials. 2nd ed. Taylor & Francis Ltd., London, 1999.
  • S.S. Rao, The Finite Element Method in Engineering, Elsevier Science & Technology, Burlington, 2004.
  • R. Rashid, S. Masood, D. Ruan, S. Palanisamy, X. Huang and R.A. Rahman Rashid, Design optimization and finite element model validation of LPBF-printed lattice-structured beams. Metals. (Basel) 13(2) (2023), pp. 184. doi:10.3390/met13020184
  • A.M. Ibrahim, A. M. Ali and H. Kamel, Design optimization and production of a small-scale semi-trailer chassis for testing. J. Eng. Appl. Sci. 70(1) (2023), pp. 35. doi:10.1186/s44147-023-00201-z
  • S. Roy, B. Saini, D. Chakrabarti, and N. Chakraborti, Mechanical properties of micro-alloyed steels studied using a evolutionary deep neural network. Mater. Manuf. Processes 35(6 ) (2020), pp. 611–624.
  • R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 20(5 ) (2016), pp. 773–791.
  • P. David, T. Mareš, and N. Chakraborti, Evolutionary multi-objective optimization of truss topology for additively manufactured components. Mater. Manuf. Processes 38 (2023) pp. 1922–1931. doi:10.1080/10426914.2023.2196325
  • D. Vondráček, Z. Padovec, T. Mareš, and N. Chakraborti, Optimization of dome shape for filament wound pressure vessels using data-driven evolutionary algorithms. Mater. Manuf. Processes 38 (2023) pp. 1899–1910. doi:10.1080/10426914.2023.2187823
  • D. Vondráček, Z. Padovec, T. Mareš, and N. Chakraborti, Analysis and optimization of junction between cylindrical part and end dome of filament wound pressure vessels using data driven evolutionary algorithms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. (2023). doi:10.1177/09544062231191319
  • Compo Tech PLUS, spol. s r.o., Bicycles, 2024. Available at https://compotech.com/what-we-do/sectors/bicycle/.
  • Compo Tech PLUS, spol. s r.o., About us, 2024. Available at https://compotech.com/.
  • M. Dvořák, T. Ponížil, V. Kulíšek, N. Schmidová, K. Doubrava, B. Kropík, and M. Růžička, Experimental Development of Composite Bicycle Frame. Applied Sciences 12.16 (2022) pp.8377. doi:10.3390/app12168377
  • P.D. Soden, Loads, stresses, and deflections in bicycle frames. J. Strain Anal. Eng. Des. 21(4) (1986), pp. 185–195.
  • P. Sarath, A. Deepak, H. Hrishikesh and N. S. D. Jinuchandran, Stress analysis of bicycle frame using different materials by FEA. GRD JS Glob Res Dev J Eng 6(7) (2021), pp. 14–20.
  • C. Rontescu, T.D. Cicic, C.G. Amza, O. Chivu and D. Dobrotă, Choosing the optimum material for making a bicycle frame. Metalurgija 54(4) (2015), pp. 679–682.
  • MatWeb, LLC, MatWeb, Your Source for Materials Information, 1996-2024; dataset available at https://www.matweb.com/index.aspx.
  • R.V. Mises, Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913 (1913), pp. 582-592.
  • Y.C. Cheng, C.K. Lee, and M.T. Tsai, Multi-objective optimization of an on-road bicycle frame by uniform design and compromise programming. Adv Mech Eng 8(2) (2016). doi:10.1177/1687814016632985
  • A.G. Kitselis, C.S. Nikolakea, and D.E. Manolakos. The design process of an optimized road racing bicycle frame. Machines 10.2 (2022) pp.149 doi:10.3390/machines10020149
  • D. Covill, S. Begg, E. Elton, M. Milne, R. Morris and T. Katz, Parametric finite element analysis of bicycle frame geometries. Procedia. Eng. 72 (2014), pp. 441–446.
  • J. Finn, Application of optimisation tools to the design of advanced carbon fibre bicycle: Factor 001. Proceedings of 6th Altair CAE Technology Conference, Warwickshire, UK. (2009).
  • T.J.C. Liu, and H.C. Wu, Fiber direction and stacking sequence design for bicycle frame made of carbon/epoxy composite laminate. Mater. Des. 31(4 ) (2010), pp. 1971–1980.
  • A. Singh, Z. Gu, X. Hou, Y. Liu and D. J. Hughes, Design optimisation of braided composite beams for lightweight rail structures using machine learning methods. Compos. Struct. 282 (2022) pp. 115107 doi:10.1016/j.compstruct.2021.115107
  • T.W. Liu, J. B. Bai, N. Fantuzzi, G. Y. Bu and D. Li, Multi-objective optimisation designs for thin-walled deployable composite hinges using surrogate models and Genetic Algorithms. Compos. Struct. 280 (2022) pp. 114757. doi:10.1016/j.compstruct.2021.114757
  • J.H.S. Almeida Jr., L. Bittrich, T. Nomura and A. Spickenheuer, Cross-section optimization of topologically-optimized variable-axial anisotropic composite structures. Compos. Struct. 225, (2019), pp. 111150. doi:10.1016/j.compstruct.2019.111150
  • J.H.S. Almeida Jr., T. V. Lisbôa, A. Spickenheuer and L. St-Pierre, A sequential finite element model updating routine to identify creep parameters for filament wound composite cylinders in aggressive environments. Comput. Struct. 276, (2023), pp. 106939. doi:10.1016/j.compstruc.2022.106939