145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterisation and modelling of anisotropic hardening behaviour of cubic and hexagonal close packed polycrystalline metals

ORCID Icon, &
Article: 2352718 | Received 17 Jan 2024, Accepted 02 Apr 2024, Published online: 15 May 2024

References

  • L. Sun, and R.H. Wagoner, Proportional and non-proportional hardening behavior of dual-phase steels. Int. J. Plast 45 (2013), pp. 174–187.
  • R.H. Wagoner, H. Lim, and M.G. Lee, Advanced Issues in springback. Int. J. Plast 45 (2013), pp. 3–20.
  • L. Geng, Y. Shen, and R.H. Wagoner, Anisotropic hardening equations derived from reverse-bend testing. Int. J. Plast 18 (2002), pp. 743–767.
  • M.G. Lee, S.J. Kim, R.H. Wagoner, K. Chung, and H.Y. Kim, Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback. Int. J. Plast 25 (2009), pp. 70–104.
  • W. Prager, A new method of analyzing stresses and strains in work hardening plastic solids. J. Appl. Mech 23 (1956), pp. 493–496. MR0083280.
  • H. Ziegler, A modification of Prager’s hardening rule. Q. Appl. Math 17 (1959), pp. 55–65. MR0104405.
  • J.L. Chaboche, Time-independent constitutive theories for cyclic plasticity. Int. J. Plast 2 (1986), pp. 149–188.
  • J.L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast 5 (1989), pp. 247–302.
  • F. Yoshida, and T. Uemori, A model of large-strain cyclic plasticity and its application to springback simulation. Int. J. Mech. Sci 45 (2003), pp. 1687–1702.
  • F. Yoshida, and T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int. J. Plast 18 (2002), pp. 661–686.
  • M. François, A plasticity model with yield surface distortion for non proportional loading. Int. J. Plast 17 (2001), pp. 703–717.
  • H.P. Feigenbaum, and Y.F. Dafalias, Simple model for directional distortional hardening in metal plasticity within thermodynamics. J. Eng. Mech 134 (2008), pp. 730–738.
  • G.Z. Voyiadjis, G. Thiagarajan, and E. Petrakis, Constitutive modelling for granular media using an anisotropic distortional yield model. Acta Mech. 110 (1995), pp. 151–171.
  • H.P. Feigenbaum, and Y.F. Dafalias, Directional distortional hardening in metal plasticity within thermodynamics. Int. J. Solids Struct 44 (2007), pp. 7526–7542.
  • F. Barlat, J.J. Gracio, M.G. Lee, E.F. Rauch, and G. Vincze, An alternative to kinematic hardening in classical plasticity. Int. J. Plast 27 (2011), pp. 1309–1327.
  • F. Barlat, J. Ha, J.J. Grácio, M.-G. Lee, E.F. Rauch, and G. Vincze, Extension of homogeneous anisotropic hardening model to cross-loading with latent effects. Int. J. Plast 46 (2013), pp. 130–142.
  • F. Barlat, G. Vincze, J.J. Grácio, M.-G. Lee, E.F. Rauch, and C.N. Tomé, Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels. Int. J. Plast 58 (2014), pp. 201–218.
  • B. Reyne, and F. Barlat, A new concept for continuum distortional plasticity. Int. J. Plast 155 (2022), pp. 103303.
  • M.G. Lee, D. Kim, C. Kim, M.L. Wenner, and K. Chung, Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications. Int. J. Plast 21 (2005), pp. 915–953.
  • J.-Y. Lee, J.-W. Lee, M.-G. Lee, and F. Barlat, An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending. Int. J. Solids Struct 49 (2012), pp. 3562–3572.
  • O.M. Badr, F. Barlat, B. Rolfe, M.-G. Lee, P. Hodgson, and M. Weiss, Constitutive modelling of high strength titanium alloy Ti-6Al-4 V for sheet forming applications at room temperature. Int. J. Solids Struct 80 (2016), pp. 334–347.
  • J. Lee, J. Ha, H.J. Bong, D. Kim, and M.-G. Lee, Evolutionary anisotropy and flow stress in advanced high strength steels under loading path changes. Mater. Sci. Eng. A 672 (2016), pp. 65–77.
  • R.K. Boger, R.H. Wagoner, F. Barlat, M.G. Lee, and K. Chung, Continuous, large strain, tension/compression testing of sheet material. Int. J. Plast 21 (2005), pp. 2319–2343.
  • T. Kuwabara, Y. Kumano, J. Ziegelheim, and I. Kurosaki, Tension–compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior. Int. J. Plast 25 (2009), pp. 1759–1776.
  • F. Yoshida, and T. Amaishi, Model for description of nonlinear unloading-reloading stress-strain response with special reference to plastic-strain dependent chord modulus. Int. J. Plast 130 (2020), pp. 102708.
  • Abaqus, User’s Manual, Hibbit, Karlsson & Sorensen Inc., Pawtucket, RI, 2021.
  • J. Lee, H.J. Bong, and M.-G. Lee, Return mapping with a line search method for integrating stress of the distortional hardening law with differential softening, Comput. Struct 257 (2021), pp. 106652.
  • J. Choi, J. Lee, G. Bae, F. Barlat, and M. Lee, Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models. JOM 68 (2016), pp. 1850–1857.
  • F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, and E. Chu, Plane stress yield function for aluminum alloy sheets - Part 1: Theory. Int. J. Plast 19 (2003), pp. 1297–1319.
  • J. Lee, H.J. Bong, J. Ha, J. Choi, F. Barlat, and M.-G. Lee, Influence of Yield Stress Determination in Anisotropic Hardening Model on Springback Prediction in Dual-Phase Steel. JOM 70 (2018), pp. 1560–1566.
  • O. Cazacu, B. Plunkett, and F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast 22 (2006), pp. 1171–1194.
  • B. Plunkett, O. Cazacu, and F. Barlat, Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int. J. Plast 24 (2008), pp. 847–866.
  • H.J. Bong, J. Lee, and M.-G. Lee, Modeling crystal plasticity with an enhanced twinning–detwinning model to simulate cyclic behavior of AZ31B magnesium alloy at various temperatures. Int. J. Plast 150 (2022), pp. 103190.
  • J. Lee, H.J. Bong, Y.-S. Lee, D. Kim, and M.-G. Lee, Pulsed electric current V-bending springback of AZ31B magnesium alloy sheets. Metall. Mater. Trans. A 50 (2019), pp. 2720–2731.