873
Views
2
CrossRef citations to date
0
Altmetric
Full Critical Review

Biomaterial strategies to combat implant infections: new perspectives to old challenges

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1011-1049 | Received 17 Oct 2022, Accepted 07 Mar 2023, Published online: 17 Apr 2023

References

  • Basu B. Biomaterials science and tissue engineering: principles and methods. Cambridge: Cambridge University Press; 2017. p. 716.
  • Chandorkar Y, Ravikumar K, Bikramjit B. The foreign body response demystified. ACS Biomater Sci Eng. 2019;5(1):19–44. doi:10.1021/acsbiomaterials.8b00252.
  • Basu B. Biomaterials science and implants: status, challenges and recommendations. Singapore: Springer; 2020.
  • Basu B, Ghosh S. Biomaterials for musculoskeletal regeneration: applications. Singapore: Springer; 2018. pp. 262
  • Basu B. Biomaterials for musculoskeletal regeneration: concepts. Singapore: Springer; 2018.
  • Imarcgroup. Implantable medical devices market: global industry trends, share, size, growth, opportunity and forecast 2021–2026. 2021. Available from: https://www.imarcgroup.com/implantable-medical-devices-market.
  • Kassanos P, Berthelot M, Kim JA, et al. Smart sensing for surgery: from tethered devices to wearables and implantables. IEEE Trans Syst Man Cybern Syst. 2020;6(3):39–48. doi:10.1109/Msmc.2019.2963455.
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198. doi:10.1056/NEJMoa1306801.
  • Zhang Y, Du M, Johnston JM, et al. Incidence of healthcare-associated infections in a tertiary hospital in Beijing, China: results from a real-time surveillance system. Antimicrob Resist Infect Control. 2019;8(1):145. doi:10.1186/s13756-019-0582-7.
  • VanEpps JS, Younger JG. Implantable device-related infection. Shock. 2016;46(6):597–608. doi:10.1097/shk.0000000000000692.
  • De Waal YCM, Vangsted TE, Van Winkelhoff AJ. Systemic antibiotic therapy as an adjunct to non-surgical peri-implantitis treatment: a single-blind RCT. J Clin Periodontol. 2021;48(7):996. doi:10.1111/jcpe.13464.
  • Alder KD, Lee I, Munger AM, et al. Intracellular staphylococcus aureus in bone and joint infections: a mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone. 2020;141:115568. doi:10.1016/j.bone.2020.115568.
  • Dhaliwal JS, Abd Rahman NA, Ming LC, et al. Microbial biofilm decontamination on dental implant surfaces: a mini review. Front Cell Infect Microbiol. 2021;11:736186. doi:10.3389/fcimb.2021.736186.
  • Rizk PA, Deen JT, Pulido LF. When and how to retain implants in periprosthetic joint infection. Oper Tech Orthop. 2021;31(4):100908. doi:10.1016/j.oto.2021.100908.
  • Napalkov P, Felici DM, Chu LK, et al. Incidence of catheter-related complications in patients with central venous or hemodialysis catheters: a health care claims database analysis. BMC Cardiovasc Disord. 2013;13:86. doi:10.1186/1471-2261-13-86.
  • ECDC. Healthcare-associated infections acquired in intensive care units. In European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report for 2017. Stockholm, 2019.
  • Buetti N, Timsit J-F. Management and prevention of central venous catheter-related infections in the ICU. Semin Respir Crit Care Med. 2019;40(4):508–523. doi:10.1055/s-0039-1693705.
  • Zimlichman E, Henderson D, Tamir O, et al. Health care–associated infections. JAMA Intern Med. 2013;173(22):2039. doi:10.1001/jamainternmed.2013.9763.
  • Fysaraki M, Samonis G, Valachis A, et al. Incidence, clinical, microbiological features and outcome of bloodstream infections in patients undergoing hemodialysis. Int J Medical Sci. 2013;10(12):1632. doi:10.7150/ijms.6710.
  • Nguyen DB, Arduino MJ, Patel PR. 25 – Hemodialysis-associated infections. In: Himmelfarb J, Ikizler TA, editors. Chronic kidney disease, dialysis, and transplantation. 4th ed. Philadelphia (PA): Elsevier; 2019. p. 389.
  • Tal MG, Yevzlin AS. Catheter-related blood stream infection in hemodialysis patients with symmetric tunneled non-side-hole hemodialysis catheters. J Vasc Access. 2021:1. doi:10.1177/11297298211027058.
  • Hussein WF, Gomez N, Sun SJ, et al. Use of a gentamicin-citrate lock leads to lower catheter-related bloodstream infection rates and reduced cost of care in hemodialysis patients. Hemodial Int. 2021;25(1):20. doi:10.1111/hdi.12880.
  • Dudeck MA, Edwards JR, Allen-Bridson K, et al. National healthcare safety network report, data summary for 2013, device-associated module. Am J Infect Control. 2015;43(3):206–221. doi:10.1016/j.ajic.2014.11.014.
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–1301. doi:10.1017/ice.2016.174.
  • Chatterjee S, Dey R, Kundu AK, et al. Biofilms on indwelling urologic devices: microbes and antimicrobial management prospect. Ann Med Health Sci Res. 2014;4(1):100. doi:10.4103/2141-9248.126612.
  • Hanak BW, Bonow RH, Harris CA. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg. 2017;52(6):381–400. doi:10.1159/000452840.
  • Paff M, Alexandru-Abrams D, Muhonen M, et al. Ventriculoperitoneal shunt complications: a review. Interdiscip Neurosurg. 2018;13:66. doi:10.1016/j.inat.2018.04.004.
  • Sahin A, Dalgic N, Kilic M, et al. The role of intraventricular antibiotic therapy in the treatment of ventriculo-peritoneal shunt infection in children. Childs Nerv Syst. 2021;37(5):1605–1612. doi:10.1007/s00381-021-05116-9.
  • Demoz GT, Alebachew M, Legesse Y, et al. Treatment of ventriculoperitoneal shunt infection and ventriculitis caused by Acinetobacter baumannii: a case report. J Med Case Rep. 2018;12(1):141. doi:10.1186/s13256-018-1680-5.
  • Dinçer E, Dalgıç Karabulut N. Ventriculo-peritoneal shunt infections in a tertiary center, 3 years experience. Trends Pediatr. 2021;2(1):28. doi:10.5222/tp.2021.29392.
  • Olsen T, Jørgensen OD, Nielsen JC, et al. Incidence of device-related infection in 97 750 patients: clinical data from the complete Danish device-cohort (1982–2018). Eur Heart J. 2019;40(23):1862–1869. doi:10.1093/eurheartj/ehz316.
  • Polewczyk A, Jacheć W, Segreti L, et al. Influence of the type of pathogen on the clinical course of infectious complications related to cardiac implantable electronic devices. Sci Rep. 2021;11(1):14864. doi:10.1038/s41598-021-94168-7.
  • Kirkfeldt RE, Johansen JB, Nielsen JC. Management of cardiac electronic device infections: challenges and outcomes. Arrhythmia Electrophysiol Rev. 2016;5(3):183. doi:10.15420/aer.2016:21:2.
  • Boriani G, Vitolo M, Wright DJ, et al. Infections associated with cardiac electronic implantable devices: economic perspectives and impact of the TYRX™ antibacterial envelope. Europace. 2021;23(23 Suppl 4):iv33–iv44. doi:10.1093/europace/euab126.
  • Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397–409. doi:10.1038/s41579-018-0019-y.
  • Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–e25. doi:10.1093/cid/cis803.
  • Garfield K, Noble S, Lenguerrand E, et al. What are the inpatient and day case costs following primary total hip replacement of patients treated for prosthetic joint infection: a matched cohort study using linked data from the national joint registry and hospital episode statistics. BMC Med. 2020;18(1):335. doi:10.1186/s12916-020-01803-7.
  • Haddad FS, Ngu A, Negus JJ. Prosthetic joint infections and cost analysis. In: Drago L, editor. A modern approach to biofilm-related orthopaedic implant infections. Advances in experimental medicine and biology Vol. 971. Cham: Springer; 2017. p. 93–100.
  • Guillaume O, Pérez-Tanoira R, Fortelny R, et al. Infections associated with mesh repairs of abdominal wall hernias: are antimicrobial biomaterials the longed-for solution? Biomaterials. 2018;167:15–31. doi:10.1016/j.biomaterials.2018.03.017.
  • Plymale MA, Davenport DL, Walsh-Blackmore S, et al. Costs and complications associated with infected mesh for ventral hernia repair. Surg Infect. 2020;21(4):344–349. doi:10.1089/sur.2019.183.
  • Wi YM, Patel R. Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am. 2018;32(4):915–929. doi:10.1016/j.idc.2018.06.009.
  • Giles C, Lamont-Friedrich SJ, Michl TD, et al. The importance of fungal pathogens and antifungal coatings in medical device infections. Biotechnol Adv. 2018;36(1):264–280. doi:10.1016/j.biotechadv.2017.11.010.
  • Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018;4(2):274–288. doi:10.3934/microbiol.2018.2.274.
  • Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 2013;8(4):509–524. doi:10.2217/fmb.13.7.
  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453–464. doi:10.1038/nrmicro.2017.42.
  • Chauveaux D. Preventing surgical-site infections: measures other than antibiotics. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S77–S83. doi:10.1016/j.otsr.2014.07.028.
  • Schömig F, Perka C, Pumberger M, et al. Implant contamination as a cause of surgical site infection in spinal surgery: are single-use implants a reasonable solution? A systematic review. BMC Musculoskelet Disord. 2020;21(1):634. doi:10.1186/s12891-020-03653-z.
  • Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34(34):8533–8554. doi:10.1016/j.biomaterials.2013.07.089.
  • Tiwari A, Sharma P, Vishwamitra B, et al. Review on surface treatment for implant infection via gentamicin and antibiotic releasing coatings. Coatings. 2021;11(8):1006. doi:10.3390/coatings11081006.
  • Amin Yavari S, Castenmiller SM, Strijp JAG, et al. Combating implant infections: shifting focus from bacteria to host. Adv Mater. 2020;32(43):2002962. doi:10.1002/adma.202002962.
  • Seebach E, Kubatzky KF. Chronic implant-related bone infections – can immune modulation be a therapeutic strategy? Front Immunol. 2019;10:1724. doi:10.3389/fimmu.2019.01724.
  • Godoy-Gallardo M, Eckhard U, Delgado LM, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater. 2021;6(12):4470–4490. doi:10.1016/j.bioactmat.2021.04.033.
  • Guerrero Correa M, Martínez FB, Vidal CP, et al. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol. 2020;11:1450–1469. doi:10.3762/bjnano.11.129.
  • Kamaruzzaman NF, Tan LP, Hamdan RH, et al. Antimicrobial polymers: the potential replacement of existing antibiotics? Int J Mol Sci. 2019;20(11):2747. doi:10.3390/ijms20112747.
  • Greenhalgh R, Dempsey-Hibbert NC, Whitehead KA. Antimicrobial strategies to reduce polymer biomaterial infections and their economic implications and considerations. Int Biodeterior Biodegradation. 2019;136:1–14. doi:10.1016/j.ibiod.2018.10.005.
  • Wang Y, Wang F, Zhang H, et al. Antibacterial material surfaces/interfaces for biomedical applications. Appl Mater Today. 2021;25:101192. doi:10.1016/j.apmt.2021.101192.
  • Kyzioł A, Khan W, Sebastian V, et al. Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chem Eng J. 2020;385:123888. doi:10.1016/j.cej.2019.123888.
  • Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci. 2020;8(24):6867–6882. doi:10.1039/d0bm00788a.
  • Khalid S, Gao A, Wang G, et al. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci. 2020;8(24):6840–6857. doi:10.1039/d0bm00845a.
  • Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019;2:100017. doi:10.1016/j.mtbio.2019.100017.
  • Caplin JD, Garcia AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019;93:2–11. doi:10.1016/j.actbio.2019.01.015.
  • Zheng T-X, Li W, Gu Y-Y, et al. Classification and research progress of implant surface antimicrobial techniques. J Dent Sci. 2022;17(1):1. doi:10.1016/j.jds.2021.08.019.
  • Ghimire A, Song J. Anti-periprosthetic infection strategies: from implant surface topographical engineering to smart drug-releasing coatings. ACS Appl Mater Interfaces. 2021;13(18):20921–20937. doi:10.1021/acsami.1c01389.
  • Afewerki S, Bassous N, Harb S, et al. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomed Nanotechnol Biol Med. 2020;24:102143. doi:10.1016/j.nano.2019.102143.
  • Souza JGS, Bertolini MM, Costa RC, et al. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience. 2021;24(1):102008. doi:10.1016/j.isci.2020.102008.
  • Sadowska JM, Genoud KJ, Kelly DJ, et al. Bone biomaterials for overcoming antimicrobial resistance: advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue. Mater Today. 2021;46:136–154. doi:10.1016/j.mattod.2020.12.018.
  • Tomycz ND, Payne C, Cheng BC, et al. Prevention of implant-associated infection in neuromodulation: review of the literature and prototype of a novel protective implant coating. Surg Infect. 2019;21(4):378–383. doi:10.1089/sur.2019.075.
  • Kalelkar PP, Riddick M, García AJ. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat Rev Mater. 2021;7:39–54. doi:10.1038/s41578-021-00362-4.
  • Alt V. Antimicrobial coated implants in trauma and orthopaedics – a clinical review and risk-benefit analysis. Injury. 2017;48(3):599–607. doi:10.1016/j.injury.2016.12.011.
  • Linklater DP, Baulin VA, Juodkazis S, et al. Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol. 2020;19(1):8. doi:10.1038/s41579-020-0414-z.
  • Linklater DP, Juodkazis S, Rubanov S, et al. Comment on ‘bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli’. ACS Appl Mater Interfaces. 2017;9(35):29387. doi:10.1021/acsami.7b05707.
  • Linklater DP, Juodkazis S, Ivanova EP. Nanofabrication of mechano-bactericidal surfaces. Nanoscale. 2017;9(43):16564–16585. doi:10.1039/c7nr05881k.
  • Mohammadi H, Muhamad N, Sulong AB, et al. Recent advances on biofunctionalization of metallic substrate using ceramic coating: how far are we from clinically stable implant? J Taiwan Inst Chem Eng. 2021;118:254–270. doi:10.1016/j.jtice.2021.01.013.
  • Sirdeshmukh N, Dongre G. Laser micro & nano surface texturing for enhancing osseointegration and antimicrobial effect of biomaterials: a review. Mater Today Proc. 2021;44:2348–2355. doi:10.1016/j.matpr.2020.12.433.
  • Liu J, Liu J, Attarilar S, et al. Nano-modified titanium implant materials: a way toward improved antibacterial properties. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.576969.
  • Losic D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Exp Opin Drug Deliv. 2021;18(10):1355–1378. doi:10.1080/17425247.2021.1928071.
  • Truong VK, Webb HK, Fadeeva E, et al. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling. 2012;28(6):539–550. doi:10.1080/08927014.2012.694426.
  • Butt H-J, Roisman IV, Brinkmann M, et al. Characterization of super liquid-repellent surfaces. Curr Opin Colloid Interface Sci. 2014;19(4):343–354. doi:10.1016/j.cocis.2014.04.009.
  • Jiang R, Hao L, Song L, et al. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem Eng J. 2020;398:125609. doi:10.1016/j.cej.2020.125609.
  • Yamamoto M, Nishikawa N, Mayama H, et al. Theoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir. 2015;31(26):7355–7363. doi:10.1021/acs.langmuir.5b00670.
  • Song K, Shim J, Jung J-Y, et al. Endowing antifouling properties on metal substrata by creating an artificial barrier layer based on scalable metal oxide nanostructures. Biofouling. 2020;36(7):766–782. doi:10.1080/08927014.2020.1811238.
  • Patil D, Aravindan S, Kaushal Wasson M, et al. Fast fabrication of superhydrophobic titanium alloy as antibacterial surface using nanosecond laser texturing. J Micro Nanomanuf. 2017;6(1):011002. doi:10.1115/1.4038093.
  • Ivanova EP, Linklater DP, Aburto-Medina A, et al. Antifungal versus antibacterial defence of insect wings. J Colloid Interface Sci. 2021;603:886–897. doi:10.1016/j.jcis.2021.06.093.
  • Simi VS, Rajendran N. Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotube arrays for biomedical applications. Mater Charact. 2017;129:67–79. doi:10.1016/j.matchar.2017.04.019.
  • Wandiyanto JV, Tamanna T, Linklater DP, et al. Tunable morphological changes of asymmetric titanium nanosheets with bactericidal properties. J Colloid Interface Sci. 2020;560:572–580. doi:10.1016/j.jcis.2019.10.067.
  • Chopra D, Gulati K, Ivanovski S. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater. 2021;127:80–101. doi:10.1016/j.actbio.2021.03.027.
  • Li Y, Yang Y, Li R, et al. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: a review of current techniques. Int J Nanomedicine. 2019;14:7217. doi:10.2147/ijn.s216175.
  • Jaggessar A, Mathew A, Wang H, et al. Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays. J Mech Behav Biomed Mater. 2018;80:311–319. doi:10.1016/j.jmbbm.2018.02.011.
  • Kapat K, Maity PP, Rameshbabu AP, et al. Simultaneous hydrothermal bioactivation with nano-topographic modulation of porous titanium alloys towards enhanced osteogenic and antimicrobial responses. J Mater Chem B. 2018;6(18):2877–2893. doi:10.1039/c8tb00382c.
  • Cao Y, Su B, Chinnaraj S, et al. Nanostructured titanium surfaces exhibit recalcitrance towards staphylococcus epidermidis biofilm formation. Sci Rep. 2018;8(1):1071. doi:10.1038/s41598-018-19484-x.
  • Jaggessar A, Mathew A, Tesfamichael T, et al. Bacteria death and osteoblast metabolic activity correlated to hydrothermally synthesised TiO2 surface properties. Molecules. 2019;24(7):1201. doi:10.3390/molecules24071201.
  • Hasan J, Jain S, Chatterjee K. Nanoscale topography on black titanium imparts multi-biofunctional properties for orthopedic applications. Sci Rep. 2017;7(1):41118. doi:10.1038/srep41118.
  • Linklater DP, Juodkazis S, Crawford RJ, et al. Mechanical inactivation of staphylococcus aureus and pseudomonas aeruginosa by titanium substrata with hierarchical surface structures. Materialia. 2019;5:100197. doi:10.1016/j.mtla.2018.100197.
  • Zhao L, Liu T, Li X, et al. Low-temperature hydrothermal synthesis of novel 3D hybrid nanostructures on titanium surface with mechano-bactericidal performance. ACS Biomater Sci Eng. 2021;7(6):2268–2278. doi:10.1021/acsbiomaterials.0c01659.
  • Mas-Moruno C, Su BD, Matthew J. Multifunctional coatings and nanotopographies: toward cell instructive and antibacterial implants. Adv Healthc Mater. 2019;8(1):1801103. doi:10.1002/adhm.201801103.
  • Gu X, Xu Z, Gu L, et al. Preparation and antibacterial properties of gold nanoparticles: a review. Environ Chem Lett. 2021;19(1):167–187. doi:10.1007/s10311-020-01071-0.
  • Sabella S, Carney RP, Brunetti V, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale. 2014;6(12):7052. doi:10.1039/C4NR01234H.
  • Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–1949. doi:10.1002/smll.200700378.
  • David ME, Ion R-M, Grigorescu RM, et al. Hybrid materials based on multi-walled carbon nanotubes and nanoparticles with antimicrobial properties. Nanomaterials. 2021;11(6):1415. doi:10.3390/nano11061415.
  • Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54. doi:10.1016/j.actbio.2018.10.036.
  • Abdalla SSI, Katas H, Azmi F, et al. Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: mechanism of action, toxicity and current status. Curr Drug Deliv. 2020;17(2):88–100. doi:10.2174/1567201817666191227094334.
  • Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018;67(6):537–543. doi:10.1111/lam.13082.
  • Tsoli M, Kuhn H, Brandau W, et al. Cellular uptake and toxicity of Au55 clusters. Small. 2005;1(8–9):841–844. doi:10.1002/smll.200500104.
  • Woehrle GH, Brown LO, Hutchison JE. Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. J Am Ceram Soc. 2005;127(7):2172–2183. doi:10.1021/ja0457718.
  • Dragoman RM, Grogg M, Bodnarchuk MI, et al. Surface-engineered cationic nanocrystals stable in biological buffers and high ionic strength solutions. Chem Mater. 2017;29(21):9416–9428. doi:10.1021/acs.chemmater.7b03504.
  • Hainfeld JF, Furuya FR. A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J Histochem Cytochem. 1992;40(2):177–184. doi:10.1177/40.2.1552162.
  • Benyettou F, Ramdas Nair A, Dho Y, et al. Aqueous synthesis of triphenylphosphine-modified gold nanoparticles for synergistic in vitro and in vivo photothermal chemotherapy. Chem Eur J. 2020;26(23):5270–5279. doi:10.1002/chem.202000216.
  • Boda SK, Broda J, Schiefer F, et al. Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive staphylococci. Small. 2015;11(26):3183–3193. doi:10.1002/smll.201403014.
  • Klages C-P, Bewilogua K. Diamond-like carbon films. In: Riedel R, editor. Handbook of ceramic hard materials. New York (NY): Wiley; 2000. p. 623.
  • Love CA, Cook RB, Harvey TJ, et al. Diamond like carbon coatings for potential application in biological implants – a review. Tribol Int. 2013;63:141–150. doi:10.1016/j.triboint.2012.09.006.
  • Casiraghi C, Robertson J, Ferrari AC. Diamond-like carbon for data and beer storage. Mater Today. 2007;10(1):44–53. doi:10.1016/S1369-7021(06)71791-6.
  • Grill A. Diamond-like carbon: state of the art. Diam Relat Mater. 1999;8(2):428–434. doi:10.1016/S0925-9635(98)00262-3.
  • Grill A. Plasma-deposited diamondlike carbon and related materials. IBM J Res Dev. 1999;43(1.2):147–162. doi:10.1147/rd.431.0147.
  • Wongsarat W, Sarapirom S, Aukkaravittayapun S, et al. Plasma immersion ion implantation and deposition of DLC coating for modification of orthodontic magnets. Nucl Instrum Methods Phys Res B. 2012;272:346–350. doi:10.1016/j.nimb.2011.01.098.
  • Kobayashi S, Ohgoe Y, Ozeki K, et al. Diamond-like carbon coatings on orthodontic archwires. Diam Relat Mater. 2005;14:1094–1097. doi:10.1016/j.diamond.2004.11.036.
  • Huacho PMM, Nogueira MNM, Basso FG, et al. Analyses of biofilm on implant abutment surfaces coating with diamond-like carbon and biocompatibility. Braz Dent J. 2017;28(3):317–323. doi:10.1590/0103-6440201601136.
  • Kim SK, Lee JB, Koak JY, et al. An abutment screw loosening study of a diamond like carbon-coated CP titanium implant. J Oral Rehab. 2005;32(5):346–350. doi:10.1111/j.1365-2842.2004.01475.x.
  • Braydich-Stolle L, Hussain S, Schlager JJ, et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–419. doi:10.1093/toxsci/kfi256.
  • Noronha VT, Paula AJ, Durán G, et al. Silver nanoparticles in dentistry. Dent Mater. 2017;33(10):1110–1126. doi:10.1016/j.dental.2017.07.002.
  • Pokrowiecki R, Zareba T, Szaraniec B, et al. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int J Nanomedicine. 2017;12:4285–4297. doi:10.2147/ijn.S131163.
  • Lampé I, Beke D, Biri S, et al. Investigation of silver nanoparticles on titanium surface created by ion implantation technology. Int J Nanomedicine. 2019;14:4709–4721. doi:10.2147/IJN.S197782.
  • Gunputh UF, Le H, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. 2020;14(1):97–110. doi:10.1080/17435390.2019.1665727.
  • Zhou W, Jia Z, Xiong P, et al. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications. ACS Appl Mater Interfaces. 2017;9(31):25830–25846. doi:10.1021/acsami.7b06757.
  • Bonilla-Gameros L, Chevallier P, Sarkissian A, et al. Silver-based antibacterial strategies for healthcare-associated infections: processes, challenges, and regulations. An integrated review. Nanomed Nanotechnol Biol Med. 2020;24:102142. doi:10.1016/j.nano.2019.102142.
  • Ionita D, Golgovici F, Mazare A, et al. Corrosion and antibacterial characterization of Ag-DLC coatingon a new CoCrNbMoZr dental alloy. Werkst Korros. 2018;69(10):1403–1411. doi:10.1002/maco.201810147.
  • Stoian AB, Surdu-Bob C, Anghel A, et al. Investigation of high voltage anodic plasma (HVAP) Ag-DLC coatings on Ti50Zr with different Ag amounts. Coatings. 2019;9(12):792. doi:10.3390/coatings9120792.
  • Orrit-Prat J, Bonet R, Rupérez E, et al. Bactericidal silver-doped DLC coatings obtained by pulsed filtered cathodic arc co-deposition. Surf Coat Technol. 2021;411:126977. doi:10.1016/j.surfcoat.2021.126977.
  • Yang W, Gao Y, Xu D, et al. Bactericidal abilities and in vitro properties of diamond-like carbon films deposited onto MAO-treated titanium. Mater Lett. 2019;244:155–158. doi:10.1016/j.matlet.2019.02.069.
  • Domínguez-Meister S, Rojas TC, Frías JE, et al. Silver effect on the tribological and antibacterial properties of aC:Ag coatings. Tribol Int. 2019;140:105837. doi:10.1016/j.triboint.2019.06.030.
  • Wang LJ, Zhang F, Fong A, et al. Effects of silver segregation on sputter deposited antibacterial silver-containing diamond-like carbon films. Thin Solid Films. 2018;650:58–64. doi:10.1016/j.tsf.2018.02.015.
  • Mazare A, Anghel A, Surdu-Bob C, et al. Silver doped diamond-like carbon antibacterial and corrosion resistance coatings on titanium. Thin Solid Films. 2018;657:16–23. doi:10.1016/j.tsf.2018.04.036.
  • Písařík P, Jelínek M, Remsa J, et al. Antibacterial, mechanical and surface properties of Ag-DLC films prepared by dual PLD for medical applications. Mater Sci Eng C Mater Biol Appl. 2017;77:955–962. doi:10.1016/j.msec.2017.04.005.
  • Boccaccini AR, Keim S, Ma R, et al. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7(Suppl 5):S581. doi:10.1098/rsif.2010.0156.focus.
  • Zhang Z, Qu Y, Li X, et al. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces. Appl Surf Sci. 2014;303:255–262. doi:10.1016/j.apsusc.2014.02.160.
  • Gao A, Hang R, Bai L, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim Acta. 2018;271:699–718. doi:10.1016/j.electacta.2018.03.180.
  • Braem A, De Brucker K, Delattin N, et al. Alternating current electrophoretic deposition for the immobilization of antimicrobial agents on titanium implant surfaces. ACS Appl Mater Interfaces. 2017;9(10):8533–8546. doi:10.1021/acsami.6b16433.
  • Chávez-Valdez A, Boccaccini AR. Innovations in electrophoretic deposition: alternating current and pulsed direct current methods. Electrochim Acta. 2012;65:70–89. doi:10.1016/j.electacta.2012.01.015.
  • Avcu E, Baştan FE, Abdullah HZ, et al. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci. 2019;103:69–108. doi:10.1016/j.pmatsci.2019.01.001.
  • Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan–vancomycin composite coatings for prevention of implant-associated infections. Mater Sci Eng C Mater Biol Appl. 2014;41:240–248. doi:10.1016/j.msec.2014.04.036.
  • Chen S-T, Chien H-W, Cheng C-Y, et al. Drug-release dynamics and antibacterial activities of chitosan/cefazolin coatings on Ti implants. Prog Org Coat. 2021;159:106385. doi:10.1016/j.porgcoat.2021.106385.
  • Croes M, Bakhshandeh S, van Hengel IAJ, et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater. 2018;81:315–327. doi:10.1016/j.actbio.2018.09.051.
  • Seuss S, Lehmann M, Boccaccini A. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int J Mol Sci. 2014;15(7):12231–12242. doi:10.3390/ijms150712231.
  • Chen R, Cai X, Ma K, et al. The fabrication of double-layered chitosan/gelatin/genipin nanosphere coating for sequential and controlled release of therapeutic proteins. Biofabrication. 2017;9(2):025028. doi:10.1088/1758-5090/aa70c3.
  • Bakhshandeh S, Gorgin Karaji Z, Lietaert K, et al. Simultaneous delivery of multiple antibacterial agents from additively manufactured porous biomaterials to fully eradicate planktonic and adherent Staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9(31):25691. doi:10.1021/acsami.7b04950.
  • Hadidi M, Bigham A, Saebnoori E, et al. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf Coat Technol. 2017;321:171–179. doi:10.1016/j.surfcoat.2017.04.055.
  • Buxadera-Palomero J, Calvo C, Torrent-Camarero S, et al. Biofunctional polyethylene glycol coatings on titanium: an in vitro-based comparison of functionalization methods. Colloids Surf B. 2017;152:367–375. doi:10.1016/j.colsurfb.2017.01.042.
  • Nancy D, Rajendran N. Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2–SrHAP surface modified cp-titanium for osteomyelitis treatment. Int J Biol Macromol. 2018;110:197–205. doi:10.1016/j.ijbiomac.2018.01.004.
  • Farrokhi-Rad M, Fateh A, Shahrabi T, et al. Electrophoretic deposition of vancomycin loaded halloysite nanotubes-chitosan nanocomposite coatings. Surf Coat Technol. 2018;349:144–156. doi:10.1016/j.surfcoat.2018.05.070.
  • Humayun A, Luo Y, Mills DK. Electrophoretic deposition of gentamicin-loaded ZnHNTs-chitosan on titanium. Coatings. 2020;10(10):944. doi:10.3390/coatings10100944.
  • Eshghinejad P, Farnoush H, Bahrami MS, et al. Electrophoretic deposition of bioglass/graphene oxide composite on Ti-alloy implants for improved antibacterial and cytocompatible properties. Mater Technol. 2020;35(2):69–74. doi:10.1080/10667857.2019.1648740.
  • Aktan MK, Van der Gucht M, Hendrix H, et al. Anti-infective DNase I coatings on polydopamine functionalized titanium surfaces by alternating current electrophoretic deposition. Anal Chim Acta. 2022;1218:340022. doi:10.1016/j.aca.2022.340022.
  • Shen J, Gao P, Han S, et al. A tailored positively-charged hydrophobic surface reduces the risk of implant associated infections. Acta Biomater. 2020;114:421–430. doi:10.1016/j.actbio.2020.07.040.
  • Su L, Yu Y, Zhao Y, et al. Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci Rep. 2016;6(1):24420. doi:10.1038/srep24420.
  • Parent M, Baradari H, Champion E, et al. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance. J Control Release. 2017;252:1–17. doi:10.1016/j.jconrel.2017.02.012.
  • Rivadeneira J, Gorustovich A. Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol. 2017;122(6):1424–1437. doi:10.1111/jam.13393.
  • Gómez-Morales J, Iafisco M, Delgado-López JM, et al. Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater. 2013;59(1):1–46. doi:10.1016/j.pcrysgrow.2012.11.001.
  • Brow RK. Review: the structure of simple phosphate glasses. J Non Cryst Solids. 2000;263–264:1–28. doi:10.1016/S0022-3093(99)00620-1.
  • Kolmas J, Groszyk E, Kwiatkowska-Różycka D. Substituted hydroxyapatites with antibacterial properties. Biomed Res Int. 2014;2014:178123. doi:10.1155/2014/178123.
  • Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256(20):6083–6089. doi:10.1016/j.apsusc.2010.03.124.
  • Matsumoto N, Sato K, Yoshida K, et al. Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomater. 2009;5(8):3157–3164. doi:10.1016/j.actbio.2009.04.010.
  • Sugiura Y, Obika H, Horie M, et al. Aesthetic silver-doped octacalcium phosphate powders exhibiting both contact antibacterial ability and low cytotoxicity. ACS Omega. 2020;5(38):24434–24444. doi:10.1021/acsomega.0c02868.
  • Kishor C, Mishra RR, Saraf SK, et al. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res. 2016;143(1):87. doi:10.4103/0971-5916.178615.
  • Egido JE, Toner-Bartelds C, Costa AR, et al. Monitoring phage-induced lysis of gram-negatives in real time using a fluorescent DNA dye. Sci Rep. 2023;13(1):856. doi:10.1038/s41598-023-27734-w.
  • Bouchart F, Vidal O, Lacroix J-M, et al. 3D printed bioceramic for phage therapy against bone nosocomial infections. Mater Sci Eng C. 2020;111:110840. doi:10.1016/j.msec.2020.110840.
  • Barros JAR, Melo LDRd, Silva RARd, et al. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomed: Nanotechnol Biol Med. 2020;24:102145. doi:10.1016/j.nano.2019.102145.
  • Cazalbou S, Bertrand G, Drouet C. Tetracycline-loaded biomimetic apatite: an adsorption study. J Phys Chem B. 2015;119(7):3014–3024. doi:10.1021/jp5116756.
  • Iafisco M, Drouet C, Adamiano A, et al. Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin. J Mater Chem B. 2016;4(1):57–70. doi:10.1039/C5TB01524C.
  • Cianflone E, Brouillet F, Grossin D, et al. Toward smart biomimetic apatite-based bone scaffolds with spatially controlled ion substitutions. Nanomaterials. 2023;13(3):519. doi:10.3390/nano13030519.
  • Sakamoto Y, Ochiai H, Ohsugi I, et al. Evaluation of antibiotic-loaded calcium phosphate bone cement in an cranium-infected experimental model. Neurol Med Chir. 2014;54(8):647–653. doi:10.2176/nmc.oa.2013-0295.
  • Topsakal A, Ekren N, Kilic O, et al. Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications. J Mater Sci Mater Med. 2020;31(2):16. doi:10.1007/s10856-019-6356-1.
  • Weber C, Mueller M, Vandecandelaere N, et al. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches. J Mater Sci Mater Med. 2013;25:595–606. doi:10.1007/s10856-013-5097-9.
  • Ye Z, Zhu X, Mutreja I, et al. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater. 2021;6(8):2250–2260. doi:10.1016/j.bioactmat.2020.12.029.
  • Ana ID, Lestari A, Lagarrigue P, et al. Safe-by-design antibacterial peroxide-substituted biomimetic apatites: proof of concept in tropical dentistry. J Funct Biomater. 2022;13(3):144. doi:10.3390/jfb13030144.
  • Grenho L, Jorge Monteiro F, Pia Ferraz M. In vitro analysis of the antibacterial effect of nanohydroxyapatite-ZnO composites. J Biomed Mater Res A. 2014;102(10):3726–3733. doi:10.1002/jbm.a.35042.
  • Singh A, Dubey AK. Various biomaterials and techniques for improving antibacterial response. ACS Appl Bio Mater. 2018;1(1):3–20. doi:10.1021/acsabm.8b00033.
  • Bajpai I, Balani K, Basu B. Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J Am Ceram Soc. 2013;96(7):2100–2108. doi:10.1111/jace.12386.
  • Bajpai I, Basu B. Spark plasma sintered HA-ZnO ultrafine composite: mechanical, bactericidal, and cytocompatibility properties. Int J Appl Ceram Technol. 2018;15(4):961–969. doi:10.1111/ijac.12846.
  • Charoensuk T, Sirisathitkul C, Boonyang U, et al. In vitro bioactivity and stem cells attachment of three-dimensionally ordered macroporous bioactive glass incorporating iron oxides. J Non Cryst Solids. 2016;452:62–73. doi:10.1016/j.jnoncrysol.2016.08.019.
  • Prabhu YT, Rao KV, Kumari BS, et al. Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett. 2015;5(2):85–92. doi:10.1007/s40089-015-0141-z.
  • Anjaneyulu U, Swaroop VK, Vijayalakshmi U. Preparation and characterization of novel Ag doped hydroxyapatite – Fe3O4 – chitosan hybrid composites and in vitro biological evaluations for orthopaedic applications. RSC Adv. 2016;6(13):10997–11007. doi:10.1039/C5RA21479C.
  • Grenho L, Salgado CL, Fernandes MH, et al. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles – an in vitro and in vivo study. Nanotechnology. 2015;26(31):315101. doi:10.1088/0957-4484/26/31/315101.
  • Ohtsu N, Kakuchi Y, Ohtsuki T. Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl Surf Sci. 2018;445:596–600. doi:10.1016/j.apsusc.2017.09.101.
  • Turlybekuly A, Pogrebnjak AD, Sukhodub LF, et al. Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in alginate matrix. Mater Sci Eng C Mater Biol Appl. 2019;104:109965. doi:10.1016/j.msec.2019.109965.
  • Zhang Y, Liu X, Li Z, et al. Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: highly effective infection prevention and excellent osteointegration. ACS Appl Mater Interfaces. 2018;10(1):1266–1277. doi:10.1021/acsami.7b17351.
  • Zhou J, Li K, Wang B, et al. Nano-hydroxyapatite/ZnO coating prepared on a biodegradable Mg–Zn–Ca bulk metallic glass by one-step hydrothermal method in acid situation. Ceram Int. 2020;46(5):6958–6964. doi:10.1016/j.ceramint.2019.11.074.
  • Bhattacharjee A, Gupta A, Verma M, et al. Site-specific antibacterial efficacy and cyto/hemo-compatibility of zinc substituted hydroxyapatite. Ceram Int. 2019;45(9):12225–12233. doi:10.1016/j.ceramint.2019.03.132.
  • Abutaha N, Hezam A, Almekhlafi FA, et al. Rational design of Ag-ZnO-Fe3O4 nanocomposite with promising antimicrobial activity under LED light illumination. Appl Surf Sci. 2020;527:146893. doi:10.1016/j.apsusc.2020.146893.
  • Medina-Ramírez IE, Díaz de León-Macias CE, Pedroza-Herrera G, et al. Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe3O4 photocatalytic magnetic materials. Ceram Int. 2020;46(7):8979–8994. doi:10.1016/j.ceramint.2019.12.145.
  • Singh S, Barick KC, Bahadur D. Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite. Powder Technol. 2015;269:513–519. doi:10.1016/j.powtec.2014.09.032.
  • Jee S-C, Kim M, Shinde SK, et al. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments. Appl Surf Sci. 2020;509:145358. doi:10.1016/j.apsusc.2020.145358.
  • Ahmed I, Lewis M, Olsen I, et al. Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25(3):491–499. doi:10.1016/s0142-9612(03)00546-5.
  • Soulié J. Phosphate-based glasses: from structural specificities to targeted biomedical applications. In: Arcos D, Vallet-Regi M, editors. Bioactive glasses: properties, composition and recent applications. Hauppauge: Nova Publishers; 2020. p. 409.
  • Abou Neel EA, Pickup DM, Valappil SP, et al. Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem. 2009;19(6):690–701. doi:10.1039/B810675D.
  • Knowles JC. Phosphate based glasses for biomedical applications. J Mater Chem B. 2003;13(10):2395. doi:10.1039/B307119G.
  • Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6(9):3362–3378. doi:10.1016/j.actbio.2010.02.017.
  • Lagarrigue P, Soulié J, Chabrillac E, et al. Biomaterials and osteoradionecrosis of the jaw: review of the literature according to the SWiM methodology. Eur Ann Otorhinolaryngol Head Neck Dis. 2021;139:208–215. doi:10.1016/j.anorl.2021.06.006.
  • Miguez-Pacheco V, Hench LL, Boccaccini AR, et al. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15. doi:10.1016/j.actbio.2014.11.004.
  • Valappil SP, Pickup DM, Carroll DL, et al. Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother. 2007;51(12):4453–4461. doi:10.1128/AAC.00605-07.
  • Valappil SP, Knowles JC, Wilson M. Effect of silver-doped phosphate-based glasses on bacterial biofilm growth. Appl Environ Microbiol. 2008;74(16):5228. doi:10.1128/AEM.00086-08.
  • Lee S, Nakano T, Kasuga T. Structure, dissolution behavior, cytocompatibility, and antibacterial activity of silver-containing calcium phosphate invert glasses. J Biomed Mater Res A. 2017;105(11):3127–3135. doi:10.1002/jbm.a.36173.
  • Łapa A, Cresswell M, Campbell I, et al. Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications. J Mater Chem B. 2019;7(44):6981–6993. doi:10.1039/C9TB00820A.
  • Łapa A, Cresswell M, Campbell I, et al. Gallium- and cerium-doped phosphate glasses with antibacterial properties for medical applications. Adv Eng Mater. 2020;22(9):1901577. doi:10.1002/adem.201901577.
  • Valappil SP, Cresswell M, Campbell I, et al. Role of gallium and silver from phosphate-based glasses on in vitro dual species oral biofilm models of porphyromonas gingivalis and streptococcus gordonii. Acta Biomater. 2012;8(5):1957–1965. doi:10.1016/j.actbio.2012.01.017.
  • Youness RA, Taha MA, Ibrahim M, et al. FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses. Silicon. 2018;10(3):1151–1159. doi:10.1007/s12633-017-9587-0.
  • Youness RA, Taha MA, El-Kheshen AA, et al. In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater Res Express. 2019;6(7):075212. doi:10.1088/2053-1591/ab15b5.
  • Raja FNS, Worthington T, Isaacs MA, et al. The antimicrobial efficacy of zinc doped phosphate-based glass for treating catheter associated urinary tract infections. Mater Sci Eng C. 2019;103:109868. doi:10.1016/j.msec.2019.109868.
  • Mishra A, Petit L, Pihl M, et al. Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glasses. J Mater Sci. 2017;52:8957–8972. doi:10.1007/s10853-017-0805-3.
  • Mulligan AM, Wilson M, Knowles JC. The effect of increasing copper content in phosphate-based glasses on biofilms of streptococcus sanguis. Biomaterials. 2003;24(10):1797–1807. doi:10.1016/s0142-9612(02)00577-x.
  • Lakhkar NJ, Lee I-H, Kim H-W, et al. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev. 2013;65(4):405–420. doi:10.1016/j.addr.2012.05.015.
  • Foroutan F, Kyffin BA, Abrahams I, et al. Mesoporous phosphate-based glasses prepared via Sol–Gel. ACS Biomater Sci Eng. 2020;6(3):1428–1437. doi:10.1021/acsbiomaterials.9b01896.
  • Foroutan F, Kyffin BA, Abrahams I, et al. Mesoporous strontium-doped phosphate-based Sol-Gel glasses for biomedical applications. Front Chem. 2020;8:249. doi:10.3389/fchem.2020.00249.
  • Habraken WJ, Tao J, Brylka LJ, et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun. 2013;4:1507. doi:10.1038/ncomms2490.
  • Gras P, Rey C, Marsan O, et al. Synthesis and characterisation of hydrated calcium pyrophosphate phases of biological interest. Eur J Inorg Chem. 2013;2013(34):5886–5895. doi:10.1002/ejic.201300955.
  • Moreno de Paiva J, Gomes de Oliveira Barud H, Franco DF, et al. The impact of P/Ca molar ratio on physicochemical and release properties of calcium polyphosphate coacervates. Mater Chem Phys. 2021;264:124471. doi:10.1016/j.matchemphys.2021.124471.
  • Momeni A, Valliant EM, Brennan-Pierce EP, et al. Developing an in situ forming polyphosphate coacervate as a new liquid embolic agent: from experimental design to pilot animal study. Acta Biomater. 2016;32:286–297. doi:10.1016/j.actbio.2015.12.012.
  • Alam SS, Seo Y, Lapitsky Y. Highly sustained release of bactericides from complex coacervates. ACS Appl Bio Mater. 2020;3(12):8427–8437. doi:10.1021/acsabm.0c00763.
  • Gibson I, Momeni A, Filiaggi M. Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis. J Appl Biomater Funct Mater. 2019;17(3):1. doi:10.1177/2280800019863637.
  • Chen C, Weir MD, Cheng L, et al. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater. 2014;30(8):891–901. doi:10.1016/j.dental.2014.05.025.
  • Cheng L, Weir MD, Xu HHK, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater. 2012;28(5):561–572. doi:10.1016/j.dental.2012.01.005.
  • Ibrahim MS, AlQarni F, Al-Dulaijan Y, et al. Tuning nano-amorphous calcium phosphate content in novel rechargeable antibacterial dental sealant. Materials. 2018;11(9):1544. doi:10.3390/ma11091544.
  • Yu M, You D, Zhuang J, et al. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity. ACS Appl Mater Interfaces. 2017;9(23):19698–19705. doi:10.1021/acsami.7b05296.
  • Mayen L, Jensen ND, Laurencin D, et al. A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomater. 2020;103:333–345. doi:10.1016/j.actbio.2019.12.027.
  • Soulié J, Gras P, Marsan O, et al. Development of a new family of monolithic calcium (pyro)phosphate glasses by soft chemistry. Acta Biomater. 2016;41:320–327. doi:10.1016/j.actbio.2016.05.030.
  • Tang H, Hosein A, Mattioli-Belmonte M. Traditional Chinese medicine and orthopedic biomaterials: host of opportunities from herbal extracts. Mater Sci Eng C Mater Biol Appl. 2021;120:111760. doi:10.1016/j.msec.2020.111760.
  • Chassagne F, Samarakoon T, Porras G, et al. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front Pharmacol. 2020;11:586548. doi:10.3389/fphar.2020.586548.
  • Shaheen G, Akram M, Jabeen F, et al. Therapeutic potential of medicinal plants for the management of urinary tract infection: a systematic review. Clin Exp Pharmacol Physiol. 2019;46(7):613–624. doi:10.1111/1440-1681.13092.
  • Akram M, Riaz M, Munir N, et al. Progress and prospects in the management of bacterial infections and developments in phytotherapeutic modalities. Clin Exp Pharmacol Physiol. 2020;47(7):1107–1119. doi:10.1111/1440-1681.13282.
  • Schuhladen K, Roether JA, Boccaccini AR. Bioactive glasses meet phytotherapeutics: the potential of natural herbal medicines to extend the functionality of bioactive glasses. Biomaterials. 2019;217:119288. doi:10.1016/j.biomaterials.2019.119288.
  • Drago L, Toscano M, Bottagisio M. Recent evidence on bioactive glass antimicrobial and antibiofilm activity: a mini-review. Materials. 2018;11(2):326). doi:10.3390/ma11020326.
  • Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going? J Funct Biomater. 2018;9(1):25. doi:10.3390/jfb9010025.
  • van Gestel NAP, Geurts J, Hulsen DJ, et al. Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. Biomed Res Int. 2015;2015:684826. doi:10.1155/2015/684826.
  • Eriksson E, Björkenheim R, Strömberg G, et al. S53p4 bioactive glass scaffolds induce BMP expression and integrative bone formation in a critical-sized diaphysis defect treated with a single-staged induced membrane technique. Acta Biomater. 2021;126:463–476. doi:10.1016/j.actbio.2021.03.035.
  • Zhu H, Zheng K, Boccaccini AR. Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater. 2021;129:1–17. doi:10.1016/j.actbio.2021.05.007.
  • Andrade ÂL, Manzi D, Domingues RZ. Tetracycline and propolis incorporation and release by bioactive glassy compounds. J Non Cryst Solids. 2006;352(32–35):3502–3507. doi:10.1016/j.jnoncrysol.2006.03.083.
  • Prabhu M, Ruby Priscilla S, Kavitha K, et al. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder. Biomed Res Int. 2014;2014:950691. doi:10.1155/2014/950691.
  • Wang S, Gu Z, Wang Z, et al. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites. Sci Rep. 2018;8(1):174. doi:10.1038/s41598-017-18660-9.
  • Virk RS, Rehman MAU, Munawar MA, et al. Curcumin-containing orthopedic implant coatings deposited on poly-ether-ether-ketone/bioactive glass/hexagonal boron nitride layers by electrophoretic deposition. Coatings. 2019;9(9):572. doi:10.3390/coatings9090572.
  • Akhtar MA, Mariotti CE, Conti B, et al. Electrophoretic deposition of ferulic acid loaded bioactive glass/chitosan as antibacterial and bioactive composite coatings. Surf Coat Technol. 2021;405:126657. doi:10.1016/j.surfcoat.2020.126657.
  • Floroian L, Ristoscu C, Candiani G, et al. Antimicrobial thin films based on ayurvedic plants extracts embedded in a bioactive glass matrix. Appl Surf Sci. 2017;417:224–233. doi:10.1016/j.apsusc.2017.02.197.
  • Ferraris S, Miola M, Cochis A, et al. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl Surf Sci. 2017;396:461–470. doi:10.1016/j.apsusc.2016.10.177.
  • Schuhladen K, Mukoo P, Liverani L, et al. Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. Biomed Mater. 2020;15(6):065002. doi:10.1088/1748-605X/ab87e5.
  • Arango-Ospina M, Lasch K, Weidinger J, et al. Manuka honey and zein coatings impart bioactive glass bone tissue scaffolds antibacterial properties and superior mechanical properties. Front Mater. 2021;7:610889. doi:10.3389/fmats.2020.610889.
  • Kamarudin NHN, D'Haeyer C, Thevissen K, et al. Development of mesoporous bioactive glass-containing macroporous titanium for controlled release of antimicrobial drugs. J Am Ceram Soc. 2021;105:1882–1895. doi:10.1111/jace.18105.
  • De Cremer K, Braem A, Gerits E, et al. Controlled release of chlorhexidine from a mesoporous silica-containing macroporous titanium dental implant prevents microbial biofilm formation. Eur Cell Mater. 2017;33:13. doi:10.22203/eCM.v033a02.
  • Vandamme K, Thevissen K, Mesquita MF, et al. Implant functionalization with mesoporous silica: a promising antibacterial strategy, but does such an implant osseointegrate? Clin Exp Dent Res. 2021;7(4):502–511. doi:10.1002/cre2.389.
  • Ishihama H, Ishii K, Nagai S, et al. An antibacterial coated polymer prevents biofilm formation and implant-associated infection. Sci Rep. 2021;11(1):3602. doi:10.1038/s41598-021-82992-w.
  • Zhou W, Peng X, Ma Y, et al. Two-staged time-dependent materials for the prevention of implant-related infections. Acta Biomater. 2020;101:128–140. doi:10.1016/j.actbio.2019.10.023.
  • Rai RK, Kanniyappan H, Muthuvijayan V, et al. Durable polymeric N-halamine functionalized stainless steel surface for improved antibacterial and anti-biofilm activity. Mater Adv. 2021;2:1090. doi:10.1039/D0MA00828A.
  • Wu S, Xu J, Zou L, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun. 2021;12(1):3303. doi:10.1038/s41467-021-23069-0.
  • Johnson CT, Wroe JA, Agarwal R, et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci USA. 2018;115(22):E4960. doi:10.1073/pnas.1801013115.
  • Qu Y, Peleg AY, McGiffin D. Ventricular assist device-specific infections. J Clin Med. 2021;10(3):453. doi:10.3390/jcm10030453.
  • Konai MM, Bhattacharjee B, Ghosh S, et al. Recent progress in polymer research to tackle infections and antimicrobial resistance. Biomacromolecules. 2018;19(6):1888–1917. doi:10.1021/acs.biomac.8b00458.
  • Sharma S, Basu B. Biomaterials assisted reconstructive urology: the pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials. 2021;281:121331. doi:10.1016/j.biomaterials.2021.121331.
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–864. doi:10.1002/polb.22259.
  • Soliman MM, Chowdhury MEH, Islam MT, et al. A review of biomaterials and associated performance metrics analysis in pre-clinical finite element model and in implementation stages for total hip implant system. Polymers. 2022;14(20). doi:10.3390/polym14204308.
  • Jain A, Duvvuri LS, Farah S, et al. Antimicrobial polymers. Adv Healthcare Mater 2014;3(12):1969. doi:10.1002/adhm.201400418.
  • Muñoz-Bonilla A, Cerrada ML, Fernández-García M. Chapter 1 introduction to antimicrobial polymeric materials. In: Muñoz-Bonilla A, Cerrada ML, Fernández-García M, editors, Polymeric materials with antimicrobial activity: from synthesis to applications. Cambridge: RSC Publishing; 2014. p. 1–21.
  • Malmir S, Montero B, Rico M, et al. Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A Appl Sci Manuf. 2017;93:41. doi:10.1016/j.compositesa.2016.11.011.
  • Xu PW, Yang W, Niu D, et al. Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chem Eng J. 2020;382:122864. doi:10.1016/j.cej.2019.122864.
  • Wahid F, Duan Y-X, Hu X-H, et al. A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. Int J Biol Macromol. 2019;132:692–700. doi:10.1016/j.ijbiomac.2019.03.240.
  • Basnett P, Matharu RK, Taylor CS, et al. Harnessing polyhydroxyalkanoates and pressurized gyration for hard and soft tissue engineering. ACS Appl Mater Interfaces. 2021;13(28):32624–32639. doi:10.1021/acsami.0c19689.
  • Lizarraga-Valderrama LR, Ronchi G, Nigmatullin R, et al. Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioeng Transl Med. 2021;6(3):e10223. doi:10.1002/btm2.10223.
  • Constantinides C, Basnett P, Lukasiewicz B, et al. In vivo tracking and 1H/19F magnetic resonance imaging of biodegradable polyhydroxyalkanoate/polycaprolactone blend scaffolds seeded with labeled cardiac stem cells. ACS Appl Mater Interfaces. 2018;10(30):25056. doi:10.1021/acsami.8b06096.
  • Lukasiewicz B, Basnett P, Nigmatullin R, et al. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater. 2018;71:225–234. doi:10.1016/j.actbio.2018.02.027.
  • Marcello E, Maqbool M, Nigmatullin R, et al. Antibacterial composite materials based on the combination of polyhydroxyalkanoates with selenium and strontium Co-substituted hydroxyapatite for bone regeneration. Front Bioeng Biotechnol. 2021;9:647007. doi:10.3389/fbioe.2021.647007.
  • Giourieva VS, Papi RM, Pantazaki AA. Polyhydroxyalkanoates applications in antimicrobial agents delivery and wound healing. In: Kalia VC, editor. Biotechnological applications of polyhydroxyalkanoates, 1st ed. Singapore: Springer; 2019. p. 49–76.
  • Sandoval Á, Arias-Barrau E, Bermejo F, et al. Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of pseudomonas putida. Appl Microbiol Biotechnol. 2005;67(1):97–105. doi:10.1007/s00253-004-1752-x.
  • Allen AD, Daley P, Ayorinde FO, et al. Characterization of medium chain length (R)-3-hydroxycarboxylic acids produced by streptomyces sp. JM3 and the evaluation of their antimicrobial properties. World J Microbiol Biotechnol. 2012;28(9):2791–2800. doi:10.1007/s11274-012-1089-z.
  • Radivojevic J, Skaro S, Senerovic L, et al. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Appl Microbiol Biotechnol. 2016;100(1):161–172. doi:10.1007/s00253-015-6984-4.
  • Babinot J, Guigner J-M, Renard E, et al. A micellization study of medium chain length poly(3-hydroxyalkanoate)-based amphiphilic diblock copolymers. J Colloid Interface Sci. 2012;375(1):88–93. doi:10.1016/j.jcis.2012.02.042.
  • Nigmatullin R, Thomas P, Lukasiewicz B, et al. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol. 2015;90(7):1209–1221. doi:10.1002/jctb.4685.
  • Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol. 2007;82(3):233–247. doi:10.1002/jctb.1667.
  • Mukheem A, Muthoosamy K, Manickam S, et al. Fabrication and characterization of an electrospun PHA/graphene silver nanocomposite scaffold for antibacterial applications. Materials. 2018;11(9):1673. doi:10.3390/ma11091673.
  • Slepicka P, Malá Z, Rimpelová S, et al. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater Sci Eng C Mater Biol Appl. 2016;65:364–368. doi:10.1016/j.msec.2016.04.052.
  • Mukheem A, Shahabuddin S, Akbar N, et al. Fabrication of biopolymer polyhydroxyalkanoate/chitosan and 2D molybdenum disulfide–doped scaffolds for antibacterial and biomedical applications. Appl Microbiol Biotechnol. 2020;104(7):3121–3131. doi:10.1007/s00253-020-10416-2.
  • Mukheem A, Shahabuddin S, Akbar N, et al. Boron nitride doped polyhydroxyalkanoate/chitosan nanocomposite for antibacterial and biological applications. Nanomaterials. 2019;9(4):645. doi:10.3390/nano9040645.
  • Schuhladen K, Lukasiewicz B, Basnett P, et al. Comparison of the influence of 45S5 and Cu-containing 45S5 bioactive glass (BG) on the biological properties of novel polyhydroxyalkanoate (PHA)/BG composites. Materials. 2020;13(11):2607. doi:10.3390/ma13112607.
  • Pramanik N, Dutta K, Basu RK, et al. Aromatic π-conjugated curcumin on surface modified polyaniline/polyhydroxyalkanoate based 3D porous scaffolds for tissue engineering applications. ACS Biomater Sci Eng. 2016;2(12):2365–2377. doi:10.1021/acsbiomaterials.6b00595.
  • Chotchindakun K, Pekkoh J, Ruangsuriya J, et al. Fabrication and characterization of cinnamaldehyde-loaded mesoporous bioactive glass nanoparticles/PHBV-based microspheres for preventing bacterial infection and promoting bone tissue regeneration. Polymers. 2021;13(11):1794. doi:10.3390/polym13111794.
  • Basnett P, Marcello E, Lukasiewicz B, et al. Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses. J Funct Biomater. 2020;11(2):24. doi:10.3390/jfb11020024.
  • Piarali S, Marlinghaus L, Viebahn R, et al. Activated polyhydroxyalkanoate meshes prevent bacterial adhesion and biofilm development in regenerative medicine applications. Front Bioeng Biotechnol. 2020;8:442. doi:10.3389/fbioe.2020.00442.
  • Xue Q, Liu X-B, Lao Y-H, et al. Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials. 2018;178:351–362.
  • Gregory DA, Tripathi L, Fricker ATR, et al. Bacterial cellulose: a smart biomaterial with diverse applications. Mater Sci Eng R Rep. 2021;145:100623. doi:10.1016/j.mser.2021.100623.
  • Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications. Polym Degrad Stab. 2020;179:109232. doi:10.1016/j.polymdegradstab.2020.109232.
  • Roman M, Haring AP, Bertucio TJ. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr Opin Chem Eng. 2019;24:98–106. doi:10.1016/j.coche.2019.03.006.
  • Li J, Wan Y, Li L, et al. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C. 2009;29(5):1635–1642. doi:10.1016/j.msec.2009.01.006.
  • Czaja W, Kyryliouk D, DePaula CA, et al. Oxidation of γ-irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci. 2014;131(6) doi:10.1002/app.39995.
  • Hou Y, Wang X, Yang J, et al. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res A. 2018;106(5):1288–1298. doi:10.1002/jbm.a.36330.
  • Spaic M, Small DP, Cook JR, et al. Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose. 2014;21(3):1529. doi:10.1007/s10570-014-0174-x.
  • Wang B, Lv X, Chen S, et al. In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo. Cellulose. 2016;23(5):3187. doi:10.1007/s10570-016-0993-z.
  • Hu Y, Catchmark JM. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater. 2011;7(7):2835–2845. doi:10.1016/j.actbio.2011.03.028.
  • Hu Y, Catchmark JM. Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res Part B Appl Biomater. 2011;97B(1):114–123. doi:10.1002/jbm.b.31792.
  • Yadav V, Paniliatis BJ, Shi H, et al. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol. 2010;76(18):6257. doi:10.1128/AEM.00698-10.
  • Yadav V, Sun L, Panilaitis B, et al. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J Tissue Eng Regen Med. 2015;9(12):E276. doi:10.1002/term.1644.
  • Gupta A, Briffa SM, Swingler S, et al. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules. 2020;21(5):1802–1811. doi:10.1021/acs.biomac.9b01724.
  • Liu Y, Wang S, Wang Z, et al. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. J Mater Chem B. 2020;8(22):4846–4850. doi:10.1039/d0tb00073f.
  • Wu CN, Fuh S-C, Lin S-P, et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules. 2018;19(2):544–554. doi:10.1021/acs.biomac.7b01660.
  • Mocanu A, Isopencu G, Busuioc C, et al. Bacterial cellulose films with ZnO nanoparticles and propolis extracts: synergistic antimicrobial effect. Sci Rep. 2019;9(1):17687. doi:10.1038/s41598-019-54118-w.
  • Xie YY, Hu X-H, Zhang Y-W, et al. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr Polym. 2020;229:115456. doi:10.1016/j.carbpol.2019.115456.
  • Araújo IM, Silva RR, Pacheco G, et al. Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym. 2018;179:341–349. doi:10.1016/j.carbpol.2017.09.081.
  • Mirtalebi SS, Almasi H, Alizadeh Khaledabad M. Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. Int J Biol Macromol. 2019;128:848–857. doi:10.1016/j.ijbiomac.2019.02.007.
  • Junka A, Żywicka A, Chodaczek G, et al. Potential of biocellulose carrier impregnated with essential oils to fight against biofilms formed on hydroxyapatite. Sci Rep. 2019;9(1):1256. doi:10.1038/s41598-018-37628-x.
  • Jiji S, Udhayakumar S, Rose C, et al. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int J Biol Macromol. 2019;122:452–460. doi:10.1016/j.ijbiomac.2018.10.192.
  • Fernandes SC, Sadocco P, Alonso-Varona A, et al. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces. 2013;5(8):3290–3297. doi:10.1021/am400338n.
  • He W, Zhang Z, Zheng Y, et al. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J Biomed Mater Res A. 2020;108(5):1086–1098. doi:10.1002/jbm.a.36884.
  • Orlando I, Basnett P, Nigmatullin R, et al. Chemical modification of bacterial cellulose for the development of an antibacterial wound dressing. Front Bioeng Biotechnol. 2020;8:557885. doi:10.3389/fbioe.2020.557885.
  • Kalaoglu-Altan OI, Baskan H, Meireman T, et al. Silver nanoparticle-coated polyhydroxyalkanoate based electrospun fibers for wound dressing applications. Materials. 2021;14(17):4907. doi:10.3390/ma14174907.
  • Figueroa-Lopez KJ, Vicente AA, Reis MAM, et al. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly(3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials. 2019;9(2):144. doi:10.3390/nano9020144.
  • Kehail AA, Brigham CJ. Anti-biofilm activity of solvent-cast and electrospun polyhydroxyalkanoate membranes treated with lysozyme. J Polym Environ. 2018;26(1):66–72. doi:10.1007/s10924-016-0921-1.
  • Fursatz M, Skog M, Sivlér P, et al. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ϵ-poly-L-lysine. Biomed Mater. 2018;13(2):025014. doi:10.1088/1748-605X/aa9486.
  • Min JG, Sanchez Rangel UJ, Franklin A, et al. Topical antibiotic elution in a collagen-rich hydrogel successfully inhibits bacterial growth and biofilm formation in vitro. Antimicrob Agents Chemother. 2020;64(10):e00136. doi:10.1128/AAC.00136-20.
  • Iqbal MH, Schroder A, Kerdjoudj H, et al. Effect of the buffer on the buildup and stability of tannic acid/collagen multilayer films applied as antibacterial coatings. ACS Appl Mater Interfaces. 2020;12(20):22601–22612. doi:10.1021/acsami.0c04475.
  • Kwon YS, Kim H-J, Hwang Y-C, et al. Effects of epigallocatechin gallate, an antibacterial cross-linking agent, on proliferation and differentiation of human dental pulp cells cultured in collagen scaffolds. J Endod. 2017;43(2):289–296. doi:10.1016/j.joen.2016.10.017.
  • Ao HY, Yang S, Nie B, et al. Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. J Mater Chem B. 2019;7(11):1951–1961. doi:10.1039/c8tb02425a.
  • Ge LM, Xu Y, Li X, et al. Fabrication of antibacterial collagen-based composite wound dressing. ACS Sustain Chem Eng. 2018;6(7):9153–9166. doi:10.1021/acssuschemeng.8b01482.
  • Malathi S, Balashanmugam P, Devasena T, et al. Enhanced antibacterial activity and wound healing by a novel collagen blended ZnO nanoparticles embedded niosome nanocomposites. J Drug Deliv Sci Technol. 2021;63:102498. doi:10.1016/j.jddst.2021.102498.
  • Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev. 2003;55(12):1679. doi:10.1016/j.addr.2003.08.007.
  • Adzila S, Ahmad MA, Jamal NA, et al. Synthesis of hydroxyapatite/collagen (HA/COL) composite biomaterials by precipitation for bone implant application. J Pharmaceutical Negative Res. 2022:5596. doi:10.47750/pnr.2022.13.S09.681.
  • Amirrah NI, Mohd Razip Wee MF, et al. Antibacterial-integrated collagen wound dressing for diabetes-related foot ulcers. Polymers. 2020;12(9):2168. doi:10.3390/polym12092168.
  • Joshi R. Collagen biografts for tunable drug delivery. 1st ed. Cham: Springer International; 2021.
  • Xu Z, Chang J, Zhang P, et al. Collagen modified with epoxidized safrole for improving antibacterial activity. RSC Adv. 2017;7(79):50300. doi:10.1039/c7ra08319j.
  • Zhou T, Sui B, Mo X, et al. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomedicine. 2017;12:3495. doi:10.2147/IJN.S132459.
  • Anderson TR, Marquart ME, Janorkar AV. Effective release of a broad spectrum antibiotic from elastin-like polypeptide-collagen composite. J Biomed Mater Res A. 2015;103(2):782–790. doi:10.1002/jbm.a.35219.
  • Lian XJ, Liu H, Wang X, et al. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute. Prog Nat Sci Mater Int. 2013;23(6):549. doi:10.1016/j.pnsc.2013.11.003.
  • Najafloo R, Baheiraei N, Imani R. Synthesis and characterization of collagen/calcium phosphate scaffolds incorporating antibacterial agent for bone tissue engineering application. J Bioact Compat Polym. 2021;36(1):29–43. doi:10.1177/0883911520966692.
  • Ting PA, Heng BC, Yi Ping LI, et al. Developments in antibacterial therapy: focus on physical stimuli approaches. Chin J Dent Res. 2020;23(4):235. doi:10.3290/j.cjdr.b867883.
  • Fernandes MM, Carvalho EO, Lanceros-Mendez S. Electroactive smart materials: novel tools for tailoring bacteria behavior and fight antimicrobial resistance. Front Bioeng Biotechnol. 2019;7:277. doi:10.3389/fbioe.2019.00277.
  • Boda SK, Basu B. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. J Biomed Mater Res B Appl Biomater. 2017;105(7):2174–2190. doi:10.1002/jbm.b.33740.
  • Asadi MR, Torkaman G. Bacterial inhibition by electrical stimulation. Adv Wound Care. 2013;3(2):91–97. doi:10.1089/wound.2012.0410.
  • Valic B, Golzio M, Pavlin M, et al. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J. 2003;32(6):519–528. doi:10.1007/s00249-003-0296-9.
  • Ercan B, Kummer KM, Tarquinio KM, et al. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater. 2011;7(7):3003. doi:10.1016/j.actbio.2011.04.002.
  • Gall I, Herzberg M, Oren Y. The effect of electric fields on bacterial attachment to conductive surfaces. Soft Matter. 2013;9:2443. doi:10.1039/C2SM27270A.
  • Jain S, Sharma A, Basu B. Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes. Carbon. 2015;81:193–202. doi:10.1016/j.carbon.2014.09.048.
  • Wang G, Feng H, Hu L, et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging. Nat Commun. 2018;9(1):2055. doi:10.1038/s41467-018-04317-2.
  • Emanuel E, Roman P, Cahan R. Influence of the current density in moderate pulsed electric fields on P. putida F1 eradication. Bioelectrochemistry. 2019;126:172–179. doi:10.1016/j.bioelechem.2018.12.003.
  • Boda SK, Ravikumar K, Saini DK, et al. Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli. Bioelectrochemistry. 2015;106(Pt B):276–289. doi:10.1016/j.bioelechem.2015.07.009.
  • Naskar S, Chandan, Baskaran D, et al. Dosimetry of pulsed magnetic field towards attaining bacteriostatic effect on Enterococcus faecalis: implications for endodontic therapy. Int Endod J. 2021;54(10):1878–1891. doi:10.1111/iej.13580.
  • Ghodbane S, Lahbib A, Sakly M, et al. Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int. 2013;2013:602987. doi:10.1155/2013/602987.
  • Ramon C, Ayaz M, Streeter DD, et al. Inhibition of growth rate of Escherichia coli induced by extremely low-frequency weak magnetic fields. Bioelectromagnetics. 1981;2(3):285–289. doi:10.1002/bem.2250020310.
  • Bajpai I, Saha N, Basu B. Moderate intensity static magnetic field has bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater. 2012;100(5):1206–1217. doi:10.1002/jbm.b.32685.
  • Bajpai I, Balani K, Basu B. Synergistic effect of static magnetic field and HA-Fe3O4magnetic composites on viability of S. aureus and E. coli bacteria. J Biomed Mater Res B Appl Biomater. 2014;102(3):524–532. doi:10.1002/jbm.b.33031.
  • United Nation. 17 Sustainable Development Goals. Available from: https://www.un.org/sustainabledevelopment/.
  • World Health Organization. Global guidelines for the prevention of surgical site infection. 2nd ed. Geneva: World Health Organization; 2018.
  • Boccia G, Di Spirito F, D’Ambrosio F, et al. Local and systemic antibiotics in peri-implantitis management: an umbrella review. Antibiotics. 2023;12(1):114. doi:10.3390/antibiotics12010114.
  • Choimet M. Particules colloïdales multifonctionnalisées pour la vectorisation d'un principe actif: vers une nouvelle formulation pour la dermatologie [PhD thesis]. Institut National Polytechnique de Toulouse, France, 2016
  • Governa P, Baini G, Borgonetti V, et al. Phytotherapy in the management of diabetes: a review. Molecules. 2018;23(1):105. doi:10.3390/molecules23010105.
  • Mine Y, Nakatani T, Okamoto K, et al. Biomimetic diamond-like carbon coated titanium inhibits RANKL-dependent osteoclast differentiation in vitro. J Photopolym Sci Technol. 2012;25:523. doi:10.2494/photopolymer.25.523.
  • Siala W, Kucharíková S, Braem A, et al. The antifungal caspofungin increases fluoroquinolone activity against staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nat Commun. 2016;7(1):13286. doi:10.1038/ncomms13286.
  • Luan Y, van der Mei HC, Dijk M, et al. Polarization of macrophages, cellular adhesion, and spreading on bacterially contaminated gold nanoparticle-coatings in vitro. ACS Biomater Sci Eng. 2020;6(2):933–945. doi:10.1021/acsbiomaterials.9b01518.
  • Shi D, Mi G, Wang M, et al. In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials. 2019;198:228–249. doi:10.1016/j.biomaterials.2018.10.030.
  • Balasubramaniam B, Prateek, Ranjan S, et al. Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci. 2021;4(1):8–54. doi:10.1021/acsptsci.0c00174.
  • Kumari S, Chatterjee K. Biomaterials-based formulations and surfaces to combat viral infectious diseases. APL Bioeng. 2021;5(1):011503. doi:10.1063/5.0029486.
  • Williams DL. Targeting biofilms in translational research, device development, and industrial sectors. Cham: Springer International Publishing; 2019.
  • Rai M, Kon K, Gade A, et al. Chapter 6. Antibiotic resistance: can nanoparticles tackle the problem? In: Kon K, Rai M, editors. Antimicrob resist. London: Academic Press; 2016. p. 121–144.
  • Karmakar P, Gaitonde V. Promising recent strategies with potential clinical translational value to combat antibacterial resistant surge. Medicines. 2019;6(1):21. doi:10.3390/medicines6010021.
  • Lee DK, Kim SV, Limansubroto AN, et al. Nanodiamond–gutta percha composite biomaterials for root canal therapy. ACS Nano. 2015;9(11):11490–11501. doi:10.1021/acsnano.5b05718.
  • Goswami K, Parvizi J. Targeting biofilms in orthopedic infection. In: Williams DL, editor. Targeting biofilms in translational research, device development, and industrial sectors. Cham: Springer International Publishing; 2019. p. 71.
  • Smith WR, Hudson PW, Ponce BA, et al. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord. 2018;19(1):67. doi:10.1186/s12891-018-1990-1.
  • McAndrew J, Efrimescu C, Sheehan E, et al. Through the looking glass; bioactive glass S53P4 (BonAlive®) in the treatment of chronic osteomyelitis. Ir J Med Sci. 2013;182(3):509–511. doi:10.1007/s11845-012-0895-5.
  • Cyphert EL, Zhang N, Learn GD, et al. Recent advances in the evaluation of antimicrobial materials for resolution of orthopedic implant-associated infections in vivo. ACS Infect Dis. 2021;7(12):3125–3160. doi:10.1021/acsinfecdis.1c00465.
  • Kelly MJ, Dean MC. A specific nanomanufacturing challenge. Nanotechnology. 2016;27(11):112501. doi:10.1088/0957-4484/27/11/112501.
  • Stamboulis A. AIMed as a Marie Sklodowska-Curie innovative training network (MSCA-ITN). 2022 Available from: https://aimed-itn.eu/.
  • Kazemzadeh-Narbat M. FDA regulatory challenges for antimicrobial orthopedic devices. 2021 Available from: https://www.odtmag.com/issues/2021-11-01/view_columns/fda-regulatory-challenges-for-antimicrobial-orthopedic-devices/.
  • Anonymous, Public Workshop – Orthopedic Device-Related Infections. 2020. Available from: https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-orthopedic-device-related-infections-11132020-11132020.
  • Goh GS, Tornetta P, Parvizi J. Facilitating the approval process of anti-infective technologies and advancing them to the market. J Bone Joint Surg Am. 2021;103(15):e57. doi:10.2106/jbjs.21.00007.
  • Hao Wang AG, Kazemzadeh-Narbat M, Urish K, et al. Moving toward meaningful standards for preclinical performance testing of medical devices and combination products with antimicrobial effects. In: Urish KL, Mihalko WM, editors. Antimicrobial combination devices. ASTM International; 2020. Vol. STP 1630, p. 17
  • Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat. 2019;17:42–54. doi:10.1016/j.jot.2018.09.001.
  • Romanò CL, Tsuchiya H, Morelli I, et al. Antibacterial coating of implants: are we missing something? Bone Joint Res. 2019;8(5):199. doi:10.1302/2046-3758.85.BJR-2018-0316.
  • Wang YD, Jayan G, Patwardhan D, et al. Antimicrobial and anti-biofilm medical devices: public health and regulatory science challenges. In: Zhang Z, Wagner V, editors. Antimicrobial coatings and modifications on medical devices. Cham: Springer; 2017. p. 37–65.
  • Shahid A, Aslam B, Muzammil S, et al. The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater. 2021;19:1. doi:10.1177/22808000211040304.
  • Jiao J, Zhang S, Qu X, et al. Recent advances in research on antibacterial metals and alloys as implant materials. Front Cell Infect Microbiol. 2021;11:693939. doi:10.3389/fcimb.2021.693939.
  • Romanò CL, Scarponi S, Gallazzi E, et al. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157. doi:10.1186/s13018-015-0294-5.
  • Crawford RW, Murray DW. Total hip replacement: indications for surgery and risk factors for failure. Ann Rheum Dis. 1997;56(8):455–457. doi:10.1136/ard.56.8.455.
  • Kalidindi SR. Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev. 2015;60(3):150–168. doi:10.1179/1743280414Y.0000000043.
  • Wan TT. Healthcare informatics research: from data to evidence-based management. J Med Syst. 2006;30(1):3–7. doi:10.1007/s10916-006-7397-9.
  • Larentzakis A, Lygeros N. Artificial intelligence (AI) in medicine as a strategic valuable tool. Pan Afr Med J. 2021;38:184. doi:10.11604/pamj.2021.38.184.28197.
  • Epa VC, Hook AL, Chang C, et al. Modelling and prediction of bacterial attachment to polymers. Adv Funct Mater. 2014;24(14):2085–2093. doi:10.1002/adfm.201302877.
  • Echezarreta-López MM, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int J Pharm. 2013;453(2):641–647. doi:10.1016/j.ijpharm.2013.06.036.
  • Mirzaei M, Furxhi I, Murphy F, et al. A machine learning tool to predict the antibacterial capacity of nanoparticles. Nanomaterials. 2021;11(7):1774. doi:10.3390/nano11071774.
  • Rafieerad A, Razak BA, Kaboli SHA Artificial intelligence application to improve nanoengineered implant: orthopedic and dental prosthesis. London: LAP LAMBERT Academic Publishing; 2017.
  • Cahan P, Li H, Morris S, et al. Cellnet: network biology applied to stem cell engineering. Cell. 2014;158(4):903–915. doi:10.1016/j.cell.2014.07.020.
  • Suwardi A, Wang F, Xue K, et al. Machine learning-driven biomaterials evolution. Adv Mater. 2022;34(1):e2102703. doi:10.1002/adma.202102703.
  • Lv J, Deng S, Zhang L. A review of artificial intelligence applications for antimicrobial resistance. Biosafety Health. 2021;3(1):22–31. doi:10.1016/j.bsheal.2020.08.003.
  • Ward AC, Dubey P, Basnett P, et al. Toward a closed loop, integrated biocompatible biopolymer wound dressing patch for detection and prevention of chronic wound infections. Front Bioeng Biotechnol. 2020;8:1039. doi:10.3389/fbioe.2020.01039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.