829
Views
1
CrossRef citations to date
0
Altmetric
Full Critical Review

Mechanical behaviour of thermoelectric materials – a perspective

, &
Pages 1050-1074 | Received 08 Jul 2022, Accepted 08 Feb 2023, Published online: 26 Apr 2023

References

  • Tan G, Ohta M, Kanatzidis MG. Thermoelectric power generation: from new materials to devices. Philos Trans R Soc A. 2019;377(2152):20180450.
  • Mao J, Chen G, Ren Z. Thermoelectric cooling materials. Nat Mater. 2021;20(4):454–461.
  • Snyder GJ, LeBlanc S, Crane D, et al. Distributed and localized cooling with thermoelectrics. Joule. 2021;5(4):748–751.
  • Withers PJ, Bhadeshia H. Residual stress. Part 2–Nature and origins. J Mater Sci Technol. 2001;17(4):366–375.
  • Noyan IC, Cohen JB. Residual stress: measurement by diffraction and interpretation. Springer; 2013.
  • Withers PJ, Bhadeshia H. Residual stress. Part 1–measurement techniques. J Mater Sci Technol. 2001;17(4):355–365.
  • Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. J Rapid Prototyping. 2006;12(5).
  • Das S, Chandra U. Residual stress and distortion. Handb Aluminum. 2003;1:305–349.
  • Combe E, Guilmeau E, Savary E, et al. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process. J Eur Ceram Soc. 2015;35(1):145–151.
  • Ohkoshi T, Isoda Y, Kaibe H, et al. Slip casting and thermoelectric property of CrSi2. J Trans Jpn Inst Met. 1988;29(9):756–766.
  • Farhangi H, Norouzi S, Nili-Ahmadabadi M. Effects of casting process variables on the residual stress in Ni-base superalloys. J Mater Process Technol. 2004;153:209–212.
  • Drezet J-M, Phillion A. As-cast residual stresses in an aluminum alloy AA6063 billet: neutron diffraction measurements and finite element modeling. Metall Mater Trans A. 2010;41(13):3396–3404.
  • Johnson EM, Watkins TR, Schmidlin JE, et al. A benchmark study on casting residual stress. J Metall Mater Trans A. 2012;43(5):1487–1496.
  • Tabatabaeian A, Ghasemi AR, Shokrieh MM, et al. Residual stress in engineering materials: a review. Adv Eng Mater. 2022;24(3):2100786.
  • Shiro A, Nishida M, Jing T. Residual stress estimation of Ti casting alloy by X-ray single crystal measurement method. In AIP Conference Proceedings. American Institute of Physics; 2008. Vol. 989, p. 96–100.
  • Baghani A, Davami P, Varahram N, et al. Investigation on the effect of mold constraints and cooling rate on residual stress during the sand-casting process of 1086 steel by employing a thermomechanical model. J Metall Mater Trans B. 2014;45(3):1157–1169.
  • Gibson I, Rosen D, Stucker B, et al. Directed energy deposition processes. In: Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer; 2015. p. 245–268. https://doi.org/10.1007/978-1-4939-2113-3_10
  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: materials and applications. J Appl Phys Rev. 2015;2(4):041101.
  • Rombouts M, Kruth J-P, Froyen L, et al. Fundamentals of selective laser melting of alloyed steel powders. J CIRP Ann. 2006;55(1):187–192.
  • Sing SL, Yeong WY, Wiria FE, et al. Direct selective laser sintering and melting of ceramics: a review. J Rapid Prototyping J. 2017;23(3):611–623.
  • Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. J Acta Mater. 2014;76:13–22.
  • Luo C, Qiu J, Yan Y, et al. Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol. 2018;261:74–85.
  • Yan Y, Ke H, Yang J, et al. Fabrication and thermoelectric properties of n-type CoSb2.85Te0.15 using selective laser melting. J ACS Appl Mater. 2018;10(16):13669–13674.
  • El-Desouky A, Carter M, Mahmoudi M, et al. Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. J Manuf Process. 2017;25:411–417.
  • Zhang H, Wang S, Taylor PJ, et al. Selective laser melting of half-Heusler thermoelectric materials. In: Energy harvesting and storage: materials, devices, and applications VIII. International Society for Optics and Photonics; 2018, May. Vol. 10663, p. 106630B.
  • El-Desouky A, Carter M, Andre MA, et al. Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Mater Lett. 2016;185:598–602.
  • El-Desouky A, Read A, Bardet P, et al. Selective laser melting of a bismuth telluride thermoelectric materials. In Proc. Solid Free. Symp. 2015: 1043–1050.
  • Fang Z-C, Wu Z-L, Huang C-G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts. Opt Laser Technol. 2020;129:106283.
  • Pistor J, Körner C. A novel mechanism to generate metallic single crystals. Sci Rep. 2021;11(1):1–8.
  • Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. J Prod Eng. 2010;4(1):35–45.
  • Van Belle L, Vansteenkiste G, Boyer JC. Investigation of residual stresses induced during the selective laser melting process. In: Key engineering materials. Trans Tech Publ; 2013. Vol. 554. p. 1828–1834.
  • Wang L, Jiang X, Zhu Y, et al. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts. Int J Adv Manuf Technol. 2018;97(9):3535–3546.
  • Buchbinder D, Meiners W, Pirch N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J Laser Appl. 2014;26(1):012004.
  • Carter LN, Martin C, Withers PJ, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd. 2014;615:338–347.
  • Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12(5):254–265. doi:10.1108/13552540610707013
  • Mugwagwa L, Dimitrov D, Matope S, et al. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf. 2018;21:92–99.
  • Merienne R, Lynn J, McSweeney E, et al. Thermal cycling of thermoelectric generators: The effect of heating rate. J Appl Energy. 2019;237:671–681.
  • Cramer CL, Wang H, Ma K. Performance of functionally graded thermoelectric materials and devices: a review. J Electron Mater. 2018;47(9):5122–5132.
  • Ravi V, Firdosy S, Caillat T, et al. Thermal expansion studies of selected high-temperature thermoelectric materials. J Electron Mater. 2009;38(7):1433–1442.
  • Turenne S, Clin T, Vasilevskiy D, et al. Finite element thermomechanical modeling of large area thermoelectric generators based on bismuth telluride alloys. J Electron Mater. 2010;39(9):1926–1933.
  • Al-Merbati A, Yilbas B, Sahin A. Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance. Appl Therm Eng. 2013;50(1):683–692.
  • Yilbas BS, Akhtar S, Sahin A. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations. Energy. 2016;114:52–63.
  • Erturun U, Erermis K, Mossi K. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl Therm Eng. 2014;73(1):128–141.
  • Lortz R, Viennois R, Petrovic A, et al. Phonon density of states, anharmonicity, electron-phonon coupling, and possible multigap superconductivity in the clathrate superconductors Ba8Si46 and Ba24Si100: factors behind large difference in Tc. J Phys Rev B. 2008;77(22):224507.
  • Falmbigl M, Rogl G, Rogl P, et al. Thermal expansion of thermoelectric type-I-clathrates. J Appl Phys. 2010;108(4):043529.
  • Wilkinson A, Lind C, Young R, et al. Preparation, transport properties, and structure analysis by resonant X-ray scattering of the type I clathrate Cs8Cd4Sn42. J Chem Mater. 2002;14(3):1300–1305.
  • Ravi V, Firdosy S, Caillat T, et al. Thermal expansion studies of selected high-temperature thermoelectric materials. J Electron Mater. 2009;38(7):1433–1442.
  • Jung D-y, Kurosaki K, Kim C-e, et al. Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M = Ti, Zr, Hf). J Alloys Compd. 2010;489(2):328–331.
  • Houston B, Strakna R, Belson HS. Elastic constants, thermal expansion, and Debye temperature of lead telluride. J Appl Phys. 1968;39(8):3913–3916.
  • Pavlova LM, Shtern YI, Mironov REe. Thermal expansion of bismuth telluride. J High Temp. 2011;49(3):369–379.
  • Nashchekina O, Rogacheva E, Popov VJJoP, et al. Nonstoichiometry and thermal expansion of SnTe. J Phys Chem Solids. 2008;69(2–3):273–277.
  • Marina OA, Canfield NL, Stevenson JW. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics. 2002;149(1–2):21–28.
  • Gadzhiev GG. The thermal and elastic properties of zinc oxide-based ceramics at high temperatures. High Temp. 2003;41(6):778–782.
  • Hua F, Mei Z, Glazer J. Eutectic Sn-Bi as an alternative to Pb-free solders. In 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No. 98CH36206), 1998; IEEE: pp. 277–283.
  • White G. Thermal expansion of reference materials: copper, silica and silicon. J Phys D: Appl Phys. 1973;6(17):2070.
  • Kollie T. Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the Curie temperature. Phys Rev B. 1977;16(11):4872.
  • Hayashi H, Watanabe M, Inaba H. Measurement of thermal expansion coefficient of LaCrO3. Thermochim Acta. 2000;359(1):77–85.
  • Watanabe H, Yamada N, Okaji M. Linear thermal expansion coefficient of silicon from 293 to 1000 K. Int J Thermophys. 2004;25(1):221–236.
  • Ni JE, Case ED, Stewart R, et al. Bloating in (Pb0.95Sn0.05Te) 0.92(PbS)0.08-0.055% PbI2 thermoelectric specimens as a result of processing conditions. J Electron Mater. 2012;41(6):1153–1158.
  • Ni JE, Case ED, Schmidt RD, et al. The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. J Mater Sci. 2013;48(18):6233–6244.
  • Witting IT, Grovogui JA, Dravid VP, et al. Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3 + x) through controlled porosity. J Materiomics. 2020;6(3):532–544.
  • Biguereau E, Bouvard D, Chaix J, et al. On the swelling of silver powder during sintering. Powder Metall. 2016;59(5):394–400.
  • Murray N, Dunand D. Microstructure evolution during solid-state foaming of titanium. Compos Sci Technol. 2003;63(16):2311–2316.
  • Bennison S, Harmer M. Swelling of Hot-pressed Al2O3. J Am Ceram Soc. 1985;68(11):591–597.
  • Agea-Blanco B, Reinsch S, Müller R. Sintering and foaming of barium silicate glass powder compacts. Front Mater. 2016;3:45.
  • Schmidt RD, Case ED, Ni JE, et al. The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials. J Philos Mag. 2012;92(10):1261–1286.
  • Hatzikraniotis E, Zorbas K, Samaras I, et al. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J Electron Mater. 2010;39(9):2112–2116.
  • Hori Y, Kusano D, Ito T, et al. Analysis on thermo-mechanical stress of thermoelectric module. In Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No. 99TH8407), 1999; IEEE: p. 328–331.
  • Barako MT, Park W, Marconnet AM, et al. A reliability study with infrared imaging of thermoelectric modules under thermal cycling. In 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012; IEEE: p. 86–92.
  • Tenorio HCRL, Vieira DA, de Souza CP, et al. A thermoelectric module thermal-cycling testing platform with automated measurement capabilities. In 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 2016; IEEE: pp 1-5.
  • de Cerqueira Veras JC, de Cerqueira Véras JC, Vieira DA, et al. An automatic thermal cycling based test platform for thermoelectric generator testing. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015; IEEE: pp 1949-1953.
  • Ding L, Akbarzadeh A, Date AJATE. Performance and reliability of commercially available thermoelectric cells for power generation. Appl Therm Eng. 2016;102:548–556.
  • Ming T, Wang Q, Peng K, et al. The influence of non-uniform high heat flux on thermal stress of thermoelectric power generator. Energies. 2015;8(11):12584–12602.
  • Chen G, Mu Y, Zhai P, et al. Modal analysis and study of the vibration characteristics of the thermoelectric modules of vehicle exhaust power-generation systems. J Electron Mater. 2014;43(6):1952–1958.
  • Rouklove P, Truscello V. Thermoelectric generators for deep space application. In Proceedings of the XXth International Astronautical Congress, 1972; Elsevier: pp 379-408b.
  • Liu Y, Wu C, Li Y, et al. Mechanical test of thermoelectric device in RTG prototype. Journal of Physics: Conference Series, 2021; IOP Publishing: Vol. 1865, p. 032080.
  • Bae KH, Choi S-M, Kim K-H, et al. Power-generation characteristics after vibration and thermal stresses of thermoelectric unicouples with CoSb 3/Ti/Mo (Cu) interfaces. J Electron Mater. 2015;44(6):2124–2131.
  • Greenwood GW, Johnson R. The deformation of metals under small stresses during phase transformations. Proc R Soc London Ser A Math Phys Sci. 1965;283(1394):403–422.
  • Kot RA, Weiss V. Transformation plasticity in iron-nickel alloys. Metall Trans. 1970;1(10):2685–2693.
  • Edington JW, Melton K, Cutler C. Superplasticity. Prog Mater Sci. 1976;21(1-2):61–170.
  • Zwigl P, Dunand DC. Transformation superplasticity of iron and Fe/TiC metal matrix composites. Metall Mater Trans A. 1998;29(2):565–575.
  • Grabowski JL, Dunand DC. Tensile creep properties of δ-Bi2O3. Scr Mater. 2000;43(11):1033–1038.
  • Schuh C, Dunand D. Transformation superplasticity of water ice and ice containing SiO2 particulates. J Geophys Res: Planets. 2002;107(E11):5101.
  • Chen H, Yue Z, Ren D, et al. Thermal conductivity during phase transitions. Adv Mater. 2019;31(6):1806518.
  • Liang Q, Yang D, Xia F, et al. Phase-transformation-induced giant deformation in thermoelectric Ag2Se semiconductor. Adv Funct Mater. 2021;31(50):2106938.
  • Liang X, Jin D, Dai F. Phase transition engineering of Cu2S to widen the temperature window of improved thermoelectric performance. Adv Electron Mater. 2019;5(10):1900486.
  • Li L, Peng C, Chen J, et al. Study the effect of alloying on the phase transition behavior and thermoelectric properties of Ag2S. J Alloys Compd. 2021;886:161241.
  • Dargusch M, Shi X-L, Tran XQ, et al. In-situ observation of the continuous phase transition in determining the high thermoelectric performance of polycrystalline Sn0.98Se. J Phys Chem Lett. 2019;10(21):6512–6517.
  • Yang D, Su X, Meng F, et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. J Mater Chem A. 2017;5(44):23243–23251.
  • Qi D, Tang X, Li H, et al. Improved thermoelectric performance and mechanical properties of nanostructured melt-spun β-Zn4Sb3. J Electron Mater. 2010;39(8):1159–1165.
  • Kumar A, Vermeulen PA, Kooi BJ, et al. Phase transitions of thermoelectric TAGS-85. Inorg Chem. 2017;56(24):15091–15100.
  • Ren F, Case ED, Ni JE, et al. Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos Mag. 2009;89(2):143–167.
  • Böer KW, Pohl UW. Elasticity and phonons. In: Semiconductor physics. Cham: Springer; 2018. p. 111–150.
  • Ren JB, Ren WR, Sootsman MJ., et al. The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Materialia. 2008;56(20):5954–5963.
  • Ren F, Case ED, Sootsman JR, et al. The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Mater. 2008;56(20):5954–5963.
  • Radovic M, Lara-Curzio E, Riester L. Comparison of different experimental techniques for determination of elastic properties of solids. Mater Sci Eng A. 2004;368(1-2):56–70.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583.
  • Wong C, Garikepati P. Electronic effects on the elastic constants of n-type gallium antimonide. J Appl Phys. 1982;53(12):8529–8531.
  • Slade TJ, Anand S, Wood M, et al. Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors. Joule. 2021;5(5):1168–1182.
  • Keyes RW. The electronic contribution to the elastic properties of germanium. IBM J Res Dev. 1961;5(4):266–278.
  • Keyes RW. Electronic effects in the elastic properties of semiconductors. In: Solid state physics, Vol. 20. Academic Press; 1968. p. 37–90.
  • Bruner L, Keyes RW. Electronic effect in the elastic constants of germanium. Phys Rev Lett. 1961;7(2):55.
  • Sreedhar A, Gupta S. Electronic effects in elastic constants of PbTe. Phys Rev B. 1972;5(8):3160.
  • Ghatak K, Biswas S, De D, et al. The carrier contribution to the elastic constants in superlattices of non-parabolic semiconductors with graded interfaces under magnetic quantization: simplified theory and suggestion for experimental determination. Phys B. 2004;353(3–4):127–149.
  • Male James P, Hogan Brea, Wood Max, et al. Using vacancies to tune mechanical and elastic properties in La3−xTe4, Nd3−xTe4, and Pr3−xTe4 rare earth telluride thermoelectric materials. Materials Today Physics. 2023;32:101016.
  • Kassner ME. Fundamentals of creep in metals and alloys. Butterworth-Heinemann; 2015.
  • Jones DRH, Ashby MF. Chapter 23 - mechanisms of creep, and creep-resistant materials. In: Jones DRH, Ashby MF, editor. Engineering materials 1 (Fifth Edition). Butterworth-Heinemann; 2019. p. 381–394.
  • Hu C, Xia K, Fu C, et al. Carrier grain boundary scattering in thermoelectric materials Energy & Environmental Science. 2002;15(4):1406–1422.
  • Hu C, Xia K, Fu C, et al. Carrier grain boundary scattering in thermoelectric materials. Energy Environ Sci. 2022;15(4):1406–1422.
  • Kanno T, Tamaki H, Sato HK, et al. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3. 2Sb1. 5Bi0. 49Te0. 01. Appl Phys Lett. 2018;112(3):033903.
  • Kuo JJ, Kang SD, Imasato K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ Sci. 2018;11(2):429–434.
  • Kuo JJ, Yu Y, Kang SD, et al. Mg deficiency in grain boundaries of n-type Mg3Sb2 identified by atom probe tomography. Adv Mater Interfaces. 2019;6(13):1900429.
  • Luo T, Kuo JJ, Griffith KJ, et al. Nb-mediated grain growth and grain-boundary engineering in Mg3Sb2-based thermoelectric materials. Adv Funct Mater. 2021;31(28):2100258.
  • Al Malki M, Qiu Q, Zhu T, et al. Creep behavior and postcreep thermoelectric performance of the n-type half-heusler alloy Hf0.3Zr0.7NiSn0. 98Sb0. 02. J Mater Today Phys. 2021;7(1):89–97.
  • Al Malki MM, Pengfei Qiu XS, Jeffrey Snyder G, et al. Creep behavior and post-creep thermoelectric performance of the n-type Skutterudite alloy Yb0.3Co4Sb12. J Materiomics. 2020.
  • Michi RA, Kim G, Kim B-W, et al. Compressive creep behavior of hot-pressed Mg1. 96Al0. 04Si0. 97Bi0. 03. J Scr Mater. 2018;148:10–14.
  • Li C, Snyder GJ, Dunand DC. Compressive creep behaviour of hot-pressed PbTe. J Scr Mater. 2017;134:71–74.
  • Guan Z-P, Dunand DC. Compressive creep behavior of cast Bi2Te3. J Mater Sci Eng: A. 2013;565:321–325.
  • Chang M, Agne M, Michi R, et al. Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties. Acta Mater. 2018;158:239–246.
  • Shohji I, Yoshida T, Takahashi T, et al. Comparison of low-melting lead-free solders in tensile properties with Sn–Pb eutectic solder. J Mater Sci: Mater Electron. 2004;15(4):219–223.
  • Chang R, Graves P. The effect of creep deformation on the dc conductivity of undoped and Cr-doped alumina crystals. Br J Appl Phys. 1965;16(5):715.
  • Van Eueren H. Relation between plastic strain and increase of electrical resistivity of metals. Acta Metall. 1953;1(5):607–609.
  • Kovács I, Nagy E. Electrical resistivity change of silver and gold due to large plastic strains. phy status solidi (b). 1963;3(4):726–734.
  • Martin M, Welton K. The change in electrical resistivity with plastic deformation of copper at different strain rates. Can J Phys. 1967;45(6):2226–2228.
  • Jaszek R. Carrier scattering by dislocations in semiconductors. J Mater Sci: Mater Electron. 2001;12(1):1–9.
  • Kim SI, Lee KH, Mun HA, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109–114.
  • Abdellaoui L, Chen Z, Yu Y, et al. Parallel dislocation networks and cottrell atmospheres reduce thermal conductivity of PbTe thermoelectrics. Adv Funct Mater. 2021;31(20):2101214.
  • Buch F, Ahlquist CN. Influence of dislocations on electrical conductivity of CdTe. J Appl Phys. 1974;45(4):1756–1761.
  • Buch F, Ahlquist CNJJoAP. Influence of dislocations on electrical conductivity of CdTe. J Appl Phys. 1974;45(4):1756–1761.
  • Merchant P, Elbaum C. Optical and electronic transport anisotropies in plastically deformed CdS. J Solid State Commun. 1976;20(8):775–778.
  • Gibson JB. The effect of short-range order on residual resistivity. J Phys Chem Solids. 1956;1(1–2):27–34.
  • Kim M, Flanagan W. The effect of plastic deformation on the resistivity and Hall effect of copper-palladium and gold-palladium alloys. Acta Metall. 1967;15(5):735–745.
  • Johnston WG. Effect of plastic deformation on the electrical conductivity of silver bromide. Phys Rev. 1955;98(6):1777.
  • Schijve J. Fatigue of structures and materials. Dordrecht: Springer Netherlands; 2009.
  • Schijve J. Fatigue of structures and materials. Springer Science & Business Media; 2001.
  • Zheng Y, Zhang Q, Su X, et al. Compressive fatigue behavior and its influence on the thermoelectric properties of p-type Bi0.5Sb1.5Te3 alloys. ACS Appl Mater Interfaces. 2019;11(43):40091–40098.
  • Ni JE, Case ED. Thermal fatigue of cast and hot-pressed lead-antimony-silver-tellurium (LAST) thermoelectric materials. J Electron Mater. 2013;42(7):1382–1388.
  • Kassner M, Hayes T. Creep cavitation in metals. Int J Plast. 2003;19(10):1715–1748.
  • Courtney TH. Mechanical behavior of materials. Waveland Press; 2005.
  • Knott JF. Fundamentals of fracture mechanics. Gruppo Italiano Frattura; 1973.
  • Li G, An Q, Duan B, et al. Fracture toughness of thermoelectric materials. Mater Sci Eng: R: Rep. 2021;144:100607.
  • Ma C, Liu H, Chen R, et al. Anisotropy thermoelectric and mechanical property of polycrystalline SnSe prepared under different processes. J Mater Sci: Mater Electron. 2019;30(7):6403–6410.
  • Li G, Aydemir U, Morozov SI, et al. Mechanical properties in thermoelectric oxides: ideal strength, deformation mechanism, and fracture toughness. Acta Mater. 2018;149:341–349.
  • Li G, An Q, Li W, et al. Brittle failure mechanism in thermoelectric skutterudite CoSb3. Chem Mater. 2015;27(18):6329–6336.
  • Zener C. Imperfections in nearly perfect crystals, eds W. Shockley, JH Holloman, R. Maurer and F. Seitz. New York: John Wiley and Sons Inc.; 1952.
  • Klemens P. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc London Sect A. 1955;68(12):1113.
  • Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater. 2017;29(23):1606768.
  • Ashida M, Hamachiyo T, Hasezaki K, et al. Control of crystallographic orientation and grain refinement in Bi2Te3-based thermoelectric semiconductors by applying high pressure torsion. In: Materials science forum. Trans Tech Publ; 2008. Vol. 584. p. 1006–1011.
  • Ashida M, Hamachiyo T, Hasezaki K, et al. Effect of high pressure torsion on crystal orientation to improve the thermoelectric property of a Bi2Te3-based thermoelectric semiconductor. In: Advanced materials research. Trans Tech Publ; 2010. Vol. 89. p. 41–46.
  • Masuda S, Tsuchiya K, Qiang J, et al. Effect of high-pressure torsion on the microstructure and thermoelectric properties of Fe2VAl-based compounds. J Appl Phys. 2018;124(3):035106.
  • Rogl G, Rogl P. High pressure torsion, a large-scale manufacturing tool for high ZT skutterudite thermoelectrics. Zeitschrift für anorganische allgemeine Chemie. 2022;648(15). doi:10.1002/zaac.202200044
  • Yan X, Falmbigl M, Rogl G, et al. High-pressure torsion to improve thermoelectric efficiency of clathrates? J Electron Mater. 2013;42(7):1330–1334.
  • Rogl G, Setman D, Schafler E, et al. High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater. 2012;60(5):2146–2157.
  • Rogl G, Zehetbauer M, Kerber M, et al. Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p-and n-type Sb-based skutterudites. In: Materials science forum. Trans Tech Publ; 2011, February. Vol. 667. p. 1089–1094.
  • Fukuta K, Tsuchiya K, Miyazaki H, et al. Improving thermoelectric performance of Fe2VAl-based Heusler compounds via high-pressure torsion. Appl Phys A. 2022;128(3):1–8.
  • Santamaria J, Alkorta J, Gil Sevillano J. Mechanical properties of bismuth telluride (Bi2Te3) processed by high pressure torsion (HPT). Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2013;52(3):137–142.
  • Sumida N, Ashida M, Hasezaki K, et al. Recrystallization of Bi88Sb12 thermoelectric semiconductors processed by high pressure torsion. Trans Mater Res Soc Jpn. 2011;36(1):41–46.
  • Rogl G, Rogl P, Bauer E, et al. Severe plastic deformation via high pressure torsion in thermoelectrics. In 2018-Sustainable Industrial Processing Summit, 2018; Flogen Star Outreach: Vol. 5, p. 123–124.
  • Ashida M, Hamachiyo T, Hasezaki K, et al. Texture of bismuth telluride-based thermoelectric semiconductors processed by high-pressure torsion. J Phys Chem Solids. 2009;70(7):1089–1092.
  • Harish S, Tabara M, Ikoma Y, et al. Thermal conductivity reduction of crystalline silicon by high-pressure torsion. Nanoscale Res Lett. 2014;9(1):1–5.
  • Hamachiyo T, Ashida M, Hasezaki K, et al. Thermoelectric properties of Bi2Te3-related materials finely grained by mechanical alloying and high pressure torsion. Mater Trans. 2009;50(7):1592–1595.
  • Hu L-P, Zhu T-J, Wang Y-G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 2014;6(2):e88–e88.
  • Qin C, Cheng L, Xiao Y, et al. Substitutions and dislocations enabled extraordinary n-type thermoelectric PbTe. Mater Today Phys. 2021;17:100355.
  • Male JP, Hanus R, Snyder GJ, et al. Thermal evolution of internal strain in doped PbTe. Chem Mater. 2021;33(12):4765–4772.
  • Male JP, Abdellaoui L, Yu Y, et al. Dislocations stabilized by point defects increase brittleness in PbTe. Adv Funct Mater. 2021;31(52):2108006.
  • Lu G, Lu GM, Xiao Z. Mechanical properties of porous materials. J Porous Mater. 1999;6(4):359–368.
  • Smolin AY, Roman N, Konovalenko IS, et al. 3D simulation of dependence of mechanical properties of porous ceramics on porosity. Eng Fract Mech. 2014;130:53–64.
  • Ni JE, Ren F, Case ED, et al. Porosity dependence of elastic moduli in LAST (lead–antimony–silver–tellurium) thermoelectric materials. Mater Chem Phys. 2009;118(2–3):459–466.
  • Takashiri M, Tanaka S, Hagino H, et al. Combined effect of nanoscale grain size and porosity on lattice thermal conductivity of bismuth-telluride-based bulk alloys. J Appl Phys. 2012;112(8):084315.
  • Gu Y, Liu X, Huang S, et al. Porosity induced thermoelectric performance optimization for antimony telluride. Ceram Int. 2018;44(17):21421–21427.
  • Wang Y, Liu W-D, Gao H, et al. High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl Mater Interfaces. 2019;11(34):31237–31244.
  • He P, Wu Y. Constructing of highly porous thermoelectric structures with improved thermoelectric performance. Nano Res. 2021;14:3608–3615. doi:10.1007/s12274-021-3555-0
  • Feng J, Wang W, Huang S, et al. Porous thermoelectric zintl: YbCd2Sb2. ACS Appl Energy Mater. 2020;4(1):913–920.
  • Ahmed AJ, Nazrul Islam SMK, Hossain R, et al. Enhancement of thermoelectric properties of La-doped SrTiO3 bulk by introducing nanoscale porosity. R Soc Open Sci. 2019;6(10):190870.
  • Lee H, Vashaee D, Wang D, et al. Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys. 2010;107(9):094308.
  • Phani KK, Niyogi S. Elastic modulus-porosity relation in polycrystalline rare-earth oxides. J Am Ceram Soc. 1987;70(12):C-362-C-366.
  • Ashby MF, Evans T, Fleck NA, et al. Metal foams: a design guide. Elsevier; 2000.
  • Zhao P, Yu F, Wang B, et al. Porous bismuth antimony telluride alloys with excellent thermoelectric and mechanical properties. J Mater Chem A. 2021;9(8):4990–4999.
  • Srivastava D, Norman C, Azough F, et al. Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J Alloys Compd. 2018;731:723–730.
  • Wang Y, Huang L, Li D, et al. Enhanced thermoelectric performance of Bi0.4Sb1. 6Te3 based composites with CuInTe2 inclusions. J Alloys Compd. 2018;758:72–77.
  • Bai G, Yu Y, Wu X, et al. Boron strengthened GeTe-based alloys for robust thermoelectric devices with high output power density. Adv Energy Mater. 2021;11(37):2102012.
  • Chen J, Sun Q, Bao D, et al. Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase. Acta Mater. 2021;220:117335.
  • Cadek J. Creep in metallic materials. Mater Sci Monogr. 1988;48:17.
  • Fischmeister HF, Arzt E. Densification of powders by particle deformation. Powder Metall. 1983;26(2):82–88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.