1,555
Views
1
CrossRef citations to date
0
Altmetric
Full Critical Review

A review of the processing, microstructure and property relationships in medium Mn steels

& ORCID Icon
Pages 1098-1134 | Received 07 Aug 2022, Accepted 16 Dec 2022, Published online: 11 May 2023

References

  • Fonstein N. Advanced high strength sheet steels. Cham: Springer; 2015.
  • De Moor E, Gibbs PJ, Speer JG, et al. Strategies for third-generation advanced high-strength steel development. Iron Steel Technol. 2010;7(11):133–144.
  • Billur E, Altan T. Three generations of advanced high strength steels for automotive applications, part I. Stamp J. 2013;(November/December):16–17.
  • Billur E, Dykeman J, Altan T. Three generations of advanced high-strength steels for automotive applications, part II. Stamp J. 2014;(January/February):12–13.
  • Billur E, Altan T. Three generations of advanced high-strength steels for automotive applications, part III. Stamp J. 2014;2(March/April):12–13.
  • Allain S, Chateau JP, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater Sci Eng A. 2004;387–389(1–2):158–162.Special Issue
  • Bouaziz O, Allain S, Scott CP, et al. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15:141–168.
  • De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • De Cooman BC, Chin K, Kim J. High Mn TWIP steels for automotive applications. In: Chiaberge M, editor. New trends and developments in automotive system engineering, chap. 6. IntechOpen; 2011. p. 101–128.
  • Savic V, Hector L, Singh H, et al. Development of a lightweight third-generation advanced high-Strength steel (3GAHSS) vehicle body structure. SAE Int J Mater Manuf. 2018;11:303–313.
  • Keeler S, Kimchi M, J Mooney P. Advanced high-strength steels application guidelines version 6.0. Tech. rep., WorldAutoSteel; 2017.
  • Horvath CD. Advanced steels for lightweight automotive structures. In: Mallick P, editor. Materials, design and manufacturing for lightweight vehicles, chap. 2. Elsevier Ltd.; 2021. p. 39–95.
  • Elliott R, Coley K, Mostaghel S, et al. Review of manganese processing for production of TRIP/TWIP steels, part 1: current practice and processing fundamentals. JOM. 2018;70(5):680–690.
  • Rana R, Singh S, editors. Automotive steels: design, metallurgy, processing and applications. Duxford: Woodhead Publishing; 2016.
  • Daamen M, Wietbrock B, Richter S, et al. Strip casting of a high-manganese steel (FeMn22C0.6) compared with a process chain consisting of ingot casting and hot forming. Steel Res Int. 2011;82(1):70–75.
  • Mergler D, Huel G, Bowler R, et al. Nervous system dysfunction among workers with long-term exposure to manganese. 1994.
  • Bowler RM, Gysens S, Diamond E, et al. Manganese exposure: neuropsychological and neurological symptoms and effects in welders. NeuroToxicology. 2006;27(3):315–326.
  • Cho JW, Yoo S, Park MS, et al. Improvement of castability and surface quality of continuously cast TWIP slabs by molten mold flux feeding technology. Metall Mater Trans B Process Metall Mater Process Sci. 2017;48:187–196.
  • Zhuang C, Liu J, Li C, et al. Study on high temperature solidification behavior and crack sensitivity of Fe-Mn-C-Al TWIP steel. Sci Rep. 2019;9(15962).
  • Thyssenkrupp. DP-W and DP-K. 2018. (Tech. rep.).
  • Bleck W, Haase C. Physical metallurgy of high manganese steels. Basel: MDPI; 2019.
  • Wietbrock B, Bambach M, Seuren S, et al. Homogenization strategy and material characterization of high-manganese TRIP and TWIP steels. Mater Sci Forum. 2010;638–642:3134–3139.
  • Bausch M, Frommeyer G, Hofmann H, et al. Ultra high-strength and ductile FeMnAlC light-weight steels. Luxembourg; 2013. (Tech. rep.).
  • Bleck W, Phiu-on K, Heering C, et al. Hot workability of as-cast high manganese-high carbon steels. Steel Res Int. 2007;78(7):536–545.
  • POSCO. POSCO cuts production time in half for manganese steel. 2017. Available online at: https://newsroom.posco.com/en/posco-cuts-production-time-half-manganese-steel/.
  • ThyssenKrupp. Precision strip precidur® product range. 2022. (Tech. rep.).
  • Sohn SS, Song H, Jo MC, et al. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels. Sci Rep. 2017;7(1255).
  • Lee S, De Cooman BC. Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:6039–6052.
  • Lee D, Kim JK, Lee S, et al. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A. 2017;706:1–14.
  • De Cooman BC, Lee SJ, Shin S, et al. Combined intercritical annealing and Q&P processing of medium Mn steel. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:39–45.
  • Lee S, Woo W, de Cooman BC. Analysis of the tensile behavior of 12 pct Mn multi-phase (α + γ) TWIP + TRIP steel by neutron diffraction. Metall Mater Trans A Phys Metall Mater Sci. 2016;47:2125–2140.
  • Luo H, Dong H. New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing. Mater Sci Eng A. 2015;626:207–212.
  • Shao C, Hui W, Zhang Y, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A. 2017;682:45–53.
  • He BB, Huang MX. Strong and ductile medium Mn steel without transformation-induced plasticity effect. Mater Res Lett. 2018;6(7):365–371.
  • Hu B, Luo H. A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity. J Alloys Compd. 2017;725:684–693.
  • Zhu Y, Hu B, Luo H. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels. Steel Res Int. 2018;89:Article ID 1700389.
  • Lee S, De Cooman BC. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int. 2015;86(10):1170–1178.
  • Li J, Song R, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing. Mater Sci Eng A. 2019;745:212–220.
  • Hu B, He BB, Cheng GJ, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater. 2019;174:131–141.
  • Lee S, Lee SJ, Santhosh Kumar S, et al. Localized deformation in multiphase, ultra-fine-grained 6 pct Mn transformation-induced plasticity steel. Metall Mater Trans A Phys Metall Mater Sci. *** 2011;42:3638–3651.
  • Lee H, Chul M, Su S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20 % ductility by Mn-segregation-induced TRIP mechanism. Acta Mater. 2018;147:247–260.
  • Lee S, Lee K, De Cooman BC. Observation of the TWIP+TRIP plasticity-enhancement mechanism in Al-added 6 Wt Pct medium Mn steel. Metall Mater Trans A Phys Metall Mater Sci. 2015;46:2356–2363.
  • Krizan D, Steineder K, Kaar S, et al. Development of third generation advanced high strength steels for automotive applications. In: 19th International Scientific Conference Transfer. 2018.
  • Wang H, Zhang Y, Ran R, et al. A medium-Mn steel processed by novel twin-roll strip casting route. Mater Sci Technol. 2019;35(10):1227–1238.
  • Sun B, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels. Acta Mater. 2018;148:249–262.
  • Kwok TWJ, Gong P, Xu X, et al. Microstructure evolution and tensile behaviour of a cold rolled 8 Wt Pct Mn medium manganese steel. Metall Mater Trans A Phys Metall Mater Sci. 2022;53:597–609.
  • Miller RL. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Mater Trans B. 1972;3:905–912.
  • Thomas G, Matlock DK, Rana R, et al. Integrated computational materials engineering lab heat results supporting DOE targets. In: Great designs in STEEL. 2015.
  • Gibbs PJ. Design considerations for the third generation advanced high strength steel [Ph.D. thesis]. Colorado School of Mines; 2012.
  • Olsson K, Gladh M, Hedin JE, et al. Microalloyed high-strength. Adv Mater Process. 2006;164(8):44–46.
  • Zhang Y, Wang L, Findley KO, et al. Influence of temperature and grain size on austenite stability in medium manganese steels. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:2140–2149.
  • Krizan D, Steineder K, Schenider R, et al. Physical metallurgy of batch annealed medium-Mn steels for physical metallurgy of batch annealed medium-mn. In: 20th Anniversary Int. Conf. Transfer. 2019.
  • Steineder K, Krizan D, Stadler M, et al. Consideration of critical aspects concerning large-scale production and use in automotive applications based on an optimized alloying concept for a batch- annealed medium-Mn780 grade. In: 5th International Conference on Medium and High Manganese Steels. Linz; 2022.
  • Hu J, Du LX, Liu H, et al. Structure-mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure. Mater Sci Eng A. 2015;647:144–151.
  • Limmer K, Field D, Hornbuckle C, et al. Stacking fault energy dependent deformation mechanisms in medium-Mn steels. In: TMS 2022 Annual Meeting. 2022.
  • Chen J. 1.0 GPa low carbon medium Mn heavy steel plate with excellent ductility. Mater Sci Technol. 2019;35(17):2143–2149.
  • Zou Y, Xu YB, Hu ZP, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite. Mater Sci Eng A. 2017;707:270–279.
  • De Moor E, Matlock DK, Speera JG, et al. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64(2):185–188.
  • Kim JK, De Cooman BC. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel. Mater Sci Eng A. 2016;676:216–231.
  • Tofaute W, Linden K. Transformations in solid state of manganese steels containing 1.2% C and 17% Mn. Archiv für das Eisenhüttenwesen. 1936;10:515–524.
  • Sabzi M, Farzam M. Hadfield manganese austenitic steel: a review of manufacturing processes and properties. Mater Res Exp. 2019;6(10):1065c2.
  • Hadfield RA. Some newly discovered properties of iron and manganese. Min Proc Inst Civil Eng. 1888;93(1888):61–75.
  • Kaar S, Steineder K, Schneider R, et al. New Ms-formula for exact microstructural prediction of modern 3rd generation AHSS chemistries. Scr Mater. 2021;200:Article ID 113923.
  • Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 1959;7(1):59–60.
  • Bhadeshia H, Honeycombe R. Steels and properties. 4th ed. Oxford: Butterworth-Heinemann; 2017.
  • Angel T. Formation of martensite in austenitic stainless steels. J Iron Steel Ins. 1954;5:165–175.
  • Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-To-Hagane/J Iron Steel Inst Japan. 1977;63(5):772–782.
  • Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater. 2014;65:251–258.
  • Gómez M, Medina SF. Role of microalloying elements in the microstructure of hot rolled steels. Int J Mater Res. 2011;102(10):1197–1207.
  • De Moor E, Kang S, Speer JG, et al. Manganese diffusion in third generation advanced high strength steels. In: Proceedings of the International Conference on Mining, Materials and Metallurgical Engineering. 2014.
  • Liang J, Zhao Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix. Mater Sci Eng A. 2018;711:175–181.
  • Xu X, Kwok TWJ, Gong P, et al. Tailoring the deformation behaviour of a medium Mn steel through isothermal intercritical annealing. Materialia. 2022;22:Article ID 101422.
  • Kamoutsi H, Gioti E, Haidemenopoulos GN, et al. Kinetics of solute partitioning during intercritical annealing of a medium-Mn steel. Metall Mater Trans A Phys Metall Mater Sci. 2015;46:4841–4846.
  • Souza Filho IR, Kwiatkowski da Silva A, Sandim MJR, et al. Martensite to austenite reversion in a high-Mn steel: partitioning-dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation. Acta Mater. 2019;166:178–191.
  • Ding R, Dai Z, Huang M, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel. Acta Mater. 2018;147:59–69.
  • Speer JG, De Moor E, Findley KO, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel. Metall Mater Trans A Phys Metall Mater Sci. 2011;42:3591–3601.
  • Lee S, Lee SJ, De Cooman BC. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scr Mater. 2011;65:225–228.
  • Rana R. Special issue on ‘Medium manganese steels’. Mater Sci Technol. 2019;35(17):2039–2044.
  • Gibbs PJ, De Moor E, Merwin MJ, et al. Austenite stability effects on tensile behavior of manganese-enriched- austenite transformation-induced plasticity steel. Metall Mater Trans A Phys Metall Mater Sci. 2011;42(12):3691–3702.
  • Merwin MJ. Low-carbon manganese TRIP steels. Mater Sci Forum. 2007;539–543(5):4327–4332.
  • Mueller JJ, Hu X, Sun X, et al. Austenite formation and cementite dissolution during intercritical annealing of a medium-manganese steel from a martensitic condition. Mater Des. 2021;203:Article ID 109598.
  • Lee J, Sohn SS, Hong S, et al. Effects of Mn addition on tensile and charpy impact properties in austenitic Fe-Mn-C-Al-Based steels for cryogenic applications. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:5419–5430.
  • Campbell J. Complete casting handbook: metal casting processes, metallurgy, techniques and design. 2nd ed. Oxford: Butterworth-Heinemann; 2015.
  • Lee YK, Lee SJ, Han J. Critical assessment 19: stacking fault energies of austenitic steels. Mater Sci Technol. 2016;32(1):1–8.
  • Lee YK, Han J. Current opinion in medium manganese steel. Mater Sci Technol. 2015;31(7):843–856.
  • Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-AI-C light-weight TRIPLEX steels. Steel Res Int. 2006;77(9–10):627–633.
  • Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci. 2017;89:345–391.
  • Chen P, Li X, Yi H. The κ-Carbides in low-density Fe-Mn-Al-C steels: a review on their structure, precipitation and deformation mechanism. Metals. 2020;10:1021.
  • Kozeschnik E, Bhadeshia HKDH. Influence of silicon on cementite precipitation in steels. Mater Sci Technol. 2008;24(3):343–347.
  • Wang Z, Xu J, Yan Y, et al. The influence of microstructure on the mechanical properties and fracture behavior of medium Mn steels at different strain rates. Materials. 2019;12:4228.
  • Fukagawa T, Okada H, Maehara Y. Mechanism of red scale defect formation in Si-added hot-rolled steel sheets. ISIJ Int. 1994;34(11):906–911.
  • Kwok TWJ, Slater C, Xu X, et al. A scale-up study on chemical segregation and the effects on tensile properties in two medium Mn steel castings. Metall Mater Trans A Phys Metall Mater Sci. 2022;53:585–596.
  • Lee S, Estrin Y, De Cooman BC. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall Mater Trans A Phys Metall Mater Sci. 2013;44:3136–3146.
  • He BB, Huang MX. Simultaneous increase of both strength and ductility of medium Mn transformation-Induced plasticity steel by vanadium alloying. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:1433–1438.
  • Han Y, Shi J, Xu L, et al. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel. Mater Sci Eng A. 2011;530:643–651.
  • Vázquez PJC, Pacheco-Cedeño JS, Ramos-Azpeitia MO, et al. Casting and constitutive hot flow behavior of medium-mn automotive steel with nb as microalloying. Metals. 2020;10:206.
  • Pan HJ, Cai MH, Ding H, et al. Microstructure evolution and enhanced performance of a novel Nb-Mo microalloyed medium Mn alloy fabricated by low-temperature rolling and warm stamping. Mater Des. 2017;134:352–360.
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999;15:30–36.
  • Baker TN. Processes, microstructure and properties of vanadium microalloyed steels. Mater Sci Technol. 2009;25(9):1083–1107.
  • Kaikkonen PM, Somani MC, Karjalainen LP, et al. Flow stress behaviour and static recrystallization characteristics of hot deformed austenite in microalloyed medium-carbon bainitic steels. Metals. 2021;11:138.
  • De Cooman BC, Speer JG. Fundamentals of steel product physical metallurgy. AIST; 2011.
  • Speich G, Warlimont H. Yield strength and transformation substructure of low-carbon martensite. J Iron Steel Inst. 1968;206(4):385–392.
  • Wang W, An Z, Luo S, et al. In-situ observation of peritectic solidification of Fe-Mn-Al-C steel with medium manganese. J Alloys Compd. 2022;909:Article ID 164750.
  • Wang Z, Xu J, Li J. Mechanical properties and fracture behaviors of medium-Mn steels with and without delta-ferrite for different intercritical annealing times. Mater Charact. 2021;172:Article ID 110730.
  • Sun B, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: role of the austenite-ferrite interface. Acta Mater. 2019;178:10–25.
  • Kim MT, Park TM, Baik KH, et al. Crucial microstructural feature to determine the impact toughness of intercritically annealed medium-Mn steel with triplex-phase microstructure. Acta Mater. 2019;164:122–134.
  • Sun B, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater. 2019;164:683–696.
  • Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel. Mater Sci Eng A. 2017;687:200–210.
  • Liwerski FW. Development of high strength high manganese steels [MSc thesis]. Imperial College London; 2016.
  • Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol. 2014;30(9):1099–1104.
  • Sebeck K, Toppler I, Rogers M, et al. High Mn, high Al steels for thick plate armor applications. In: Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS). 2018.
  • Lu WJ, Zhang XF, Qin RS. Structure and properties of κ-carbides in duplex lightweight steels. Ironmak Steelmak. 2015;42(8):626–631.
  • Liu D, Cai M, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel. Mater Sci Eng A. 2018;715(December 2017):25–32.
  • Wu ZQ, Ding H, Li HY, et al. Microstructural evolution and strain hardening behavior during plastic deformation of Fe-12Mn-8Al-0.8C steel. Mater Sci Eng A. 2013;584:150–155.
  • Sohn SS, Lee S, Lee BJ, et al. Microstructural developments and tensile properties of lean Fe-Mn-Al-C lightweight steels. JOM. 2014;66(9):1857–1867.
  • Lee S, Jeong J, Lee YK. Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe-9.3Mn-5.6Al-0.16C lightweight steel. J Alloys Compd. 2015;648:149–153.
  • Song H, Kwon Y, Sohn SS, et al. Improvement of tensile properties in (austenite+ferrite+κ-carbide) triplex hot-rolled lightweight steels. Mater Sci Eng A. 2018;730:177–186.
  • Cheng WC, Cheng CY, Hsu CW, et al. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel. Mater Sci Eng A. 2015;642:128–135.
  • Heo YU, Song YY, Park SJ, et al. Influence of silicon in low density Fe-C-Mn-Al steel. Metall Mater Trans A Phys Metall Mater Sci. 2012;43(6):1731–1735.
  • Kwok TWJ, Rahman KM, Xu X, et al. Design of a high strength, high ductility 12 wt% Mn medium manganese steel with hierarchical deformation behaviour. Mater Sci Eng A. 2020;782:Article ID 139258.
  • Dumay A, Chateau JP, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mater Sci Eng A. 2008;483-484:184–187.
  • Sohn SS, Song H, Kwak JH, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep. 2017;7:1927.
  • Field DM, Qing J, van Aken DC. Chemistry and properties of medium-Mn two-stage TRIP steels. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:4615–4632.
  • Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater. 2017;139:39–50.
  • Luo H, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater. 2011;59:4002–4014.
  • Li X, Song R, Zhou N, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scr Mater. 2018;154:30–33.
  • Kwok TWJ, Gong P, Rose R, et al. The relative contributions of TRIP and TWIP to strength in fine grained medium-Mn steels. Mater Sci Eng A. 2022;855:143864. DOI:10.1016/j.msea.2022.143864
  • Sohn SS, Choi K, Kwak JH, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater. 2014;78:181–189.
  • Kim CW, Kwon SI, Lee BH, et al. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast si added FeMnAlC lightweight steel. Mater Sci Eng A. 2016;673:108–113.
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater. 2008;58:484–487.
  • Bleck W, Guo X, Ma Y. The TRIP effect and its application in cold formable sheet steels. Steel Res Int. 2017;88:Article ID 1700218.
  • Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 2011;59:4653–4664.
  • Wang MM, Tasan CC, Ponge D, et al. Spectral TRIP enables ductile 1.1 GPa martensite. Acta Mater. 2016;111:262–272.
  • Talonen J, Nenonen P, Pape G, et al. Effect of strain rate on the strain-induced γ → α'-martensite transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A Phys Metall Mater Sci. 2005;36:421–432.
  • Li ZC, Li XJ, Mou YJ, et al. Tuning austenite stability in a medium Mn steel and relationship to structure and mechanical properties. Mater Sci Technol. 2020;36(12):1308–1317.
  • Field DM, Garza-Martinez LG, Van Aken DC. Processing and properties of medium-Mn TRIP steel to obtain a two-Stage TRIP behavior. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:4427–4433.
  • Olson GB, Cohen M. A mechanism for the strain-induced martensitic transformations. J Less-Common Met. 1972;28:107–118.
  • Lee S, De Cooman BC. Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel. Metall Mater Trans A. 2014;45:709–716.
  • Li ZC, Misra RD, Cai ZH, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: the discontinuous TRIP effect. Mater Sci Eng A. 2016;673:63–72.
  • Cai ZH, Ding H, Misra RD, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015;84:229–236.
  • Xu YB, Zou Y, Hu ZP, et al. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel. Mater Sci Eng A. 2017;698:126–135.
  • Yen HW, Ooi SW, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Mater. 2015;82:100–114.
  • Chatterjee S, Bhadeshia HKDH. Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation?. Mater Sci Technol. 2007;23(9):1101–1104.
  • Jacques PJ, Allain S, Bouaziz O, et al. On measurement of retained austenite in multiphase TRIP steels – results of blind round robin test involving six different techniques. Mater Sci Technol. 2009;25(5):567–574.
  • Han J, Lee SJ, Jung JG, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Acta Mater. 2014;78:369–377.
  • Kaar S, Krizan D, Schneider R, et al. Impact of Si and Al on microstructural evolution and mechanical properties of lean medium manganese quenching and partitioning steels. Steel Res Int. 2020;91:Article ID 2000181.
  • Ludwigson D, Berger J. Plastic behaviour of metastable austenitic stainless steels. J Iron Steel Inst. 1969;207(1):63–69.
  • Samek L, De Moor E, Penning J, et al. Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels. Metall Mater Trans A Phys Metall Mater Sci. 2006;37:109–124.
  • Sun B, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Materialia. 2017;133:9–13.
  • Field DM, Baker DS, Van Aken DC. On the prediction of α-Martensite temperatures in medium manganese steels. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:2150–2163.
  • Zhang S, Findley KO. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels. Acta Mater. 2013;61:1895–1903.
  • Ryu JH, Kim DI, Kim HS, et al. Strain partitioning and mechanical stability of retained austenite. Scr Mater. 2010;63:297–299.
  • Wang J, Van der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall Mater Trans A Phys Metall Mater Sci. 2001;32:1527–1539.
  • Chiang J, Boyd JD, Pilkey AK. Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Mater Sci Eng A. 2015;638:132–142.
  • He B. On the factors governing austenite stability: intrinsic versus extrinsic. Materials. 2020;13:3440.
  • He BB, Luo HW, Huang MX. Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. Int J Plast. 2016;78:173–186.
  • Field DM, Van Aken DC. Dynamic strain aging phenomena and tensile response of medium-Mn TRIP steel. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:1152–1166.
  • Lee S, Woo W, De Cooman BC. Analysis of the plasticity-enhancing mechanisms in 12 pctMn austeno-ferritic steel by in situ neutron diffraction. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:5823–5828.
  • Nakada N, Ito H, Matsuoka Y, et al. Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels. Acta Mater. 2010;58:895–903.
  • Shen YF, Li XX, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel. Mater Sci Eng A. 2012;552:514–522.
  • Tian Y, Gorbatov OI, Borgenstam A, et al. Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:1–7.
  • Panigrahi BK. Processing of low carbon steel plate and hot strip-an overview. Bull Mater Sci. 2001;24(4):361–371.
  • Lenard JG. Primer on flat rolling. 2nd ed. Oxford: Elsevier; 2007.
  • Hidalgo J, Celada-Casero C, Santofimia MJ. Fracture mechanisms and microstructure in a medium Mn quenching and partitioning steel exhibiting macrosegregation. Mater Sci Eng A. 2019;754:766–777.
  • Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater. 1998;46(1):69–80.
  • Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications. Mater Sci Technol. 2017;33(15):1713–1727.
  • Buchely MF, Field DM, Van Aken DC. Analysis of hot- and cold-rolled loads in medium-Mn TRIP steels. Metall Mater Trans B Process Metall Mater Process Sci. 2019;50:1180–1192.
  • Song H, Yoo J, Kim SH, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels. Acta Mater. 2017;135:215–225.
  • Kim MT, Park TM, Baik KH, et al. Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels. Mater Sci Eng A. 2019;752:43–54.
  • Liu L, Yang ZG, Zhang C, et al. An in situ study on austenite memory and austenitic spontaneous recrystallization of a martensitic steel. Mater Sci Eng A. 2010;527:7204–7209.
  • Glover A, Gibbs PJ, Liu C, et al. Deformation behavior of a double soaked medium manganese steel with varied martensite strength. Metals. 2019;9:761.
  • Glover A, Speer JG, De Moor E. Tempering and austempering of double soaked medium manganese steels. Front Mater. 2021;7:Article ID 622131.
  • Speer J, Rana R, Matlock D, et al. Processing variants in medium-Mn steels. Metals. 2019;9:771.
  • Wang C, Cao W, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A. 2013;562:89–95.
  • Zhang R, Cao W, Peng Z, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel. Mater Sci Eng A. 2013;583:84–88.
  • Dutta A, Park TM, Nam JH, et al. Enhancement of the tensile properties and impact toughness of a medium-Mn steel through the homogeneous microstrain distribution. Mater Charact. 2021;174:Article ID 110992.
  • Latypov MI, Shin S, De Cooman BC, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel. Acta Mater. 2016;108:219–228.
  • Li ZC, Ding H, Misra RD, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A. 2017;679:230–239.
  • Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des. 2015;83:42–48.
  • Zhang M, Li L, Ding J, et al. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Mater. 2017;141:294–303.
  • Wang XG, Wang L, Huang MX. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater. 2017;124:17–29.
  • Callahan M, Hubert O, Hild F, et al. Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels. Mater Sci Eng A. 2017;704:391–400.
  • Cai ZH, Jing SY, Li HY, et al. The influence of microstructural characteristics on yield point elongation phenomenon in Fe-0.2C-11Mn-2Al steel. Mater Sci Eng A. 2019;739:17–25.
  • Ratte E, Leonhardt S, Bleck W, et al. Energy absorption behaviour of austenitic and duplex stainless steels in a crash box geometry. Steel Res Int. 2006;77(9–10):692–697.
  • Quadfasel A, Teller M, Madivala M, et al. Computer-aided material design for crash boxes made of high manganese steels. Metals. 2019;9:772.
  • Han J, Ponge D, Raabe D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 2017;122:199–206.
  • Chao YJ, Ward JD, Sands RG. Charpy impact energy, fracture toughness and ductile-brittle transition temperature of dual-phase 590 steel. Mater Des. 2007;28:551–557.
  • Rahman KM, Vorontsov VA, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 2015;89:247–257.
  • Suh DW, Kim SJ. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scr Mater. 2017;126:63–67.
  • Xiong XC, Chen B, Huang MX, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr Mater. 2013;68:321–324.
  • Pourmajidian M, McDermid JR. On the reactive wetting of a medium-Mn advanced high-strength steel during continuous galvanizing. Surf Coat Technol. 2019;357:418–426.
  • Bhadhon KMH, McDermid JR. Selective oxidation of a medium-Mn third generation advanced high strength steel during austenitizing and intercritical annealing. J Electrochem Soc. 2022;169:Article ID 061504.
  • Mintz B. Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels. Int Mater Rev. 2001;46(4):169–197.
  • Pourmajidian M, McDermid JR. Selective oxidation of a 0.1C-6Mn-2Si third generation advanced high-Strength steel during dew-Point controlled annealing. Metall Mater Trans A Physic Metall Mater Sci. 2018;49:1795–1808.
  • Kyoung RJ, Cho L, Jong HO, et al. Surface selective oxide reduction during the intercritical annealing of medium Mn steel. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:3635–3641.
  • Alibeigi S, Kavitha R, Meguerian RJ, et al. Reactive wetting of high Mn steels during continuous hot-dip galvanizing. Acta Mater. 2011;59:3537–3549.
  • Pourmajidian M, Langelier B, McDermid JR. Effect of process atmosphere dew point and tin addition on oxide morphology and growth for a medium-Mn third generation advanced steel during intercritical annealing. Metall Mater Trans A Phys Metall Mater Sci. 2018;49(11):5561–5573.
  • Bhadhon KMH, Wang X, McDermid JR. Effects of CGL-compatible thermal processing, starting microstructure, and Sn micro-alloying on the mechanical properties of a medium-Mn third generation advanced high strength steel. Mater Sci Eng A. 2022;833(April 2021):Article ID 142563.
  • Bhadhon KMH, Wang X, McNally EA, et al. Effect of intercritical annealing parameters and starting microstructure on the microstructural evolution and mechanical properties of a medium-Mn third geration advance high strength steel. Metals. 2022;12:356.
  • Pallisco DM, McDermid JR. Mechanical property development of a 0.15C-6Mn-2Al-1Si third-generation advanced high strength steel using continuous galvanizing heat treatments. Mater Sci Eng A. 2020;778:Article ID 139111.
  • Blumenau M, Norden M, Friedel F, et al. Use of pre-oxidation to improve reactive wetting of high manganese alloyed steel during hot-dip galvanizing. Surf Coat Technol. 2011;206(2–3):559–567.
  • Blumenau M, Norden M, Schulz J, et al. Wetting and reactive wetting during hot-dip galvanizing of high Mn alloyed steel with Zn-Al-Mg baths. Surf Coat Technol. 2012;206(19–20):4194–4201.
  • Pouranvari M, Marashi SPH. Critical review of automotive steels spot welding: process, structure and properties. Sci Technol Weld Join. 2013;18(5):361–403.
  • Park G, Jeong S, Lee C. Fusion weldabilities of advanced high manganese steels: a review. Met Mater Int. 2021;27:2046–2058.
  • Wang C, Li X, Han S, et al. Warm stamping technology of the medium manganese steel. Steel Res Int. 2017;1700360:1–6.
  • O'Brien A, Guzman C, editors. Welding handbook. Vol. 4, 9th ed. Miami: American Welding Society; 2011.
  • Park G, Kim K, Uhm S, et al. A comparison of cross-tension properties and fracture behavior between similar and dissimilar resistance spot-weldments in medium-Mn TRIP steel. Mater Sci Eng A. 2019;752:206–216.
  • Park G, Uhm S, Lee C. Effects of in-situ post-weld heat treatment on the microstructure and mechanical properties of the coarse-grained heat-affected zone in a resistance spot weld in medium Mn TRIP steel. Mater Sci Eng A. 2020;788:Article ID 139477.
  • Stadler M, Schnitzer R, Gruber M, et al. Influence of the cooling time on the microstructural evolution and mechanical performance of a double pulse resistance spot welded medium-mn steel. Metals. 2021;11:270.
  • Jia Q, Liu L, Guo W, et al. Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel. Metals. 2018;8:48.
  • Park G, Kim K, Uhm S, et al. Remarkable improvement in resistance spot weldability of medium-Mn TRIP steel by paint-baking heat treatment. Mater Sci Eng A. 2019;766:Aritcle ID 138401.
  • WorldAutoSteel. Combined reports -- AHSS implementation solutions: liquid metal embrittlement study. WorldAutoSteel; 2020. (Tech. rep.).
  • Beal C, Kleber X, Fabregue D, et al. Liquid zinc embrittlement of twinning-induced plasticity steel. Scr Mater. 2012;66:1030–1033.
  • Kang H, Cho L, Lee C, et al. Zn penetration in liquid metal embrittled TWIP steel. Metall Mater Trans A Phys Metall Mater Sci. 2016;47:2885–2905.
  • Razmpoosh MH, Biro E, Chen DL, et al. Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: the role of stress and grain boundaries. Mater Charact. 2018;145:627–633.
  • Murugan SP, Kim J, Kim J, et al. Role of liquid Zn and α-Fe(Zn) on liquid metal embrittlement of medium Mn steel: an ex-situ microstructural analysis of galvannealed coating during high temperature tensile test. Surf Coat Technol. 2020;398:Article ID 126069.
  • Comstock RJ, Scherrer DK, Adamczyk PD. Hole expansion in a variety of sheet steels. J Mater Eng Perform. 2006;15(6):675–683.
  • Chen L, Kim JK, Kim SK, et al. Stretch-flangeability of high Mn TWIP steel. Steel Res Int. 2010;81(7):552–568.
  • Kashima T, Yuri T, Sugimoto KI, et al. Effect of initial microstructures before annealing on ductility of TRIP-aided steel sheets. Tetsu-To-Hagane/J Iron Steel Inst Japan. 2003;89(5):609–615.
  • Xu X, Xu BY, Chen P, et al. Effect of austenite stability on the hole expansion behavior of δ-TRIP steels. Mater Today Commun. 2020;24:Article ID 101034.
  • Kim JH, Seo EJ, Kwon MH, et al. Effect of quenching temperature on stretch flangeability of a medium Mn steel processed by quenching and partitioning. Mater Sci Eng A. 2018;729:276–284.
  • Kim JH, Lee SW, Lee K, et al. Effect of prior austenite grain size on hole expansion ratio of quenching and partitioning processed medium-Mn steel. Jom. 2019;71(4):1366–1374.
  • Levy BS, Gibbs M, Van Tyne CJ. Failure during sheared edge stretching of dual-phase steels. Metall Mater Trans A Phys Metall Mater Sci. 2013;44:3635–3648.
  • Tsipouridis P, Werner E, Krempaszky C, et al. Formability of high strength dual-phase steels. Steel Res Int. 2006;77(9–10):654–667.
  • Sun B, Fazeli F, Scott C, et al. Critical role of strain partitioning and deformation twinning on cracking phenomenon occurring during cold rolling of two duplex medium manganese steels. Scr Mater. 2017;130:49–53.
  • Chen X, Jiang H, Cui Z, et al. Hole expansion characteristics of ultra high strength steels. Procedia Eng. 2014;81:718–723.
  • Cho L, Kong Y, Speer JG, et al. Hydrogen embrittlement of medium Mn steels. Metals. 2021;11(2):358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.