1,675
Views
1
CrossRef citations to date
0
Altmetric
Full Critical Review

Glass-contact refractory of the nuclear waste vitrification melters in the United States: a review of corrosion data and melter life

ORCID Icon, , , , , , , , & show all
Pages 1135-1157 | Received 23 Mar 2023, Accepted 03 May 2023, Published online: 03 Jul 2023

References

  • Vitrified High-Level Radioactive Waste – November 2017 by U.S. Nuclear Waste Technical Review Board (Web Page). Available from: https://www.nwtrb.gov/our-work/fact-sheets/vitrified-high-level-radioactive-waste, accessed 02/28/2023.
  • Committee on Long-Term Research Needs for Radioactive High-Level Waste at Department of Energy Sites, Board on Radioactive Waste Management, National Research Council. Research Needs for High-Level Waste Stored in Tanks and Bins at U.S. Department of Energy Sites: Environmental Management Science Program: National Academies Press; 2001. Available from: https://nap.nationalacademies.org/catalog/10191/research-needs-for-high-level-waste-stored-in-tanks-and-bins-at-us-department-of-energy-sites.
  • Regalbuto M, Jones J, Schneider SP. Chapter 18 - United States: experience of radioactive waste (RAW) management and contaminated site cleanup. In: Lee WE, Ojovan MI, Jantzen CM, editors. Radioactive waste management and contaminated site clean-up: processes, technologies and international experience. Woodhead Publishing; 2013. p. 567–611.
  • U.S. Department of Energy. Vitrification systems lessons learned. U.S. Department of Energy Office of Engineering Assistance and Site Interface, Germantown, MD, USA, 1999. Available from: https://inldigitallibrary.inl.gov/PRR/93682.pdf.
  • Jain V. Survey of waste solidification process technologies, NUREG/CR-6666, CNWRA 98-005. U.S. Nuclear Regulatory Commission Office of Nuclear Material Safety and Safeguards. Washington DC, USA, 2001. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6666/index.html.
  • DesCamp VA, McMahon CL. Vitrification facility at the West Valley Demonstration Project, DOE/NE/44139-77. West Valley, NY, USA: West Valley Nuclear Services Co., Inc.; 1996. doi:10.2172/674668.
  • Jain V, Barnes S. Radioactive waste glass production at the WVDP. Waste Management (WM) Symposia, Phoenix, AZ, USA, 1997.
  • Petkus LL, Paul J, Valenti PJ, et al. A complete history of the high-level waste plant at the West Valley Demonstration Project. Waste Management (WM) Symposia, Tucson, AZ, USA, 2003.
  • Palmer RA, Houston HM, Misercola AJ. Completion of the vitrification campaign at the West Valley Demonstration Project. Ceram Trans. 2004;155:179–196.
  • Sigler J. ICP CAB evaluates path forward for high-level waste at INL (Web Page). Available from: https://www.energy.gov/em/icpcab/articles/icp-cab-evaluates-path-forward-high-level-waste-inl, accessed 03/23/2023.
  • Oertel GK, Walton RD. Management of defense high-level waste in the United States. In: Wicks GG, Ross WA, editors. Advances in ceramics Vol. 8: Nuclear waste management. Columbus, OH, USA: American Ceramic Society; 1984. p. 1–5.
  • Chew D, Hamm B, Wells M. Liquid Waste System Plan Revision 21, SRR-LWP-2009-00001. Savannah River Remediation LLC and Savannah River Site, Aiken, SC, USA, 2019. https://www.energy.gov/sites/default/files/2019/05/f62/SRS-Liquid-Waste-System-Plan-January-2019-0.pdf.
  • Chew D. Savannah River Site – Waste Tank Levels, SRMC-LWP-2022-00001, Rev. 75. Savannah River Remediation LLC and Savannah River Site, Aiken, SC, USA, 2022.
  • Wiersma BJ. The performance of underground radioactive waste storage tanks at the Savannah River Site: a 60-year historical perspective. JOM. 2014;66(3):471–490.
  • Bernards JK, Hersi GA, Hohl TM, et al. River Protection Project System Plan, ORP-11242, Rev. 9. U.S. Department of Energy, Office of River Protection, Richland, WA, USA, 2020. Available from: https://www.hanford.gov/files.cfm/System_Plan_9.pdf.
  • Burbank D, Petkus L, Hamlett M, et al. Hanford WTP LAW melter startup and tuning feed material development. Waste Management (WM) Symposia, Phoenix, AZ, USA, 2017.
  • Smith E, Bergmann D, Roach J. Preparing to assemble spare melters for the Hanford WTP DFLAW facility. Waste Management (WM) Symposia, Phoenix, AZ, USA, 2021.
  • Gephart RE, Lundgren RE. Hanford tank clean up: A guide to understanding the technical issues, PNL-10773. Pacific Northwest Laboratory, Richland, WA, USA, 1995. doi:10.2172/195769.
  • Peterson RA, Buck EC, Chun J, et al. Review of the scientific understanding of radioactive waste at the U.S. DOE Hanford Site. Environ Sci Technol. 2018;52(2):381–396.
  • Colburn HA, Peterson RA. A history of Hanford tank waste, implications for waste treatment, and disposal. Environ Prog Sustain Energy. 2021;40(1):e13567.
  • Wilmarth WR, Lumetta GJ, Johnson ME, et al. Review: waste-pretreatment technologies for remediation of legacy defense nuclear wastes. Solvent Extr Ion Exch. 2011;29(1):1–48.
  • International Atomic Energy Agency. Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1. IAEA, Vienna, Austria, 2009. Available from: https://www.iaea.org/publications/8154/classification-of-radioactive-waste.
  • Taylor RF. Chemical engineering problems of radioactive waste fixation by vitrification. Chem Eng Sci. 1985;40(4):541–569.
  • Donald IW, Metcalfe BL, Taylor RNJ. The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci. 1997;32(22):5851–5887.
  • Vienna JD. Nuclear waste vitrification in the United States: recent developments and future options. Int J Appl Glass Sci. 2010;1(3):309–321.
  • Ojovan MI, Lee WE. Glassy wasteforms for nuclear waste immobilization. Metall Mater Trans A-Phys Metall Mater Sci. 2011;42A(4):837–851.
  • Goel A, McCloy JS, Pokorny R, et al. Challenges with vitrification of Hanford high-level waste (HLW) to borosilicate glass – An overview. J Non-Cryst Solids: X. 2019;4:100033.
  • Gin S, Jollivet P, Tribet M, et al. Radionuclides containment in nuclear glasses: an overview. Radiochim Acta. 2017;105(11):927.
  • Calcined High-Level Radioactive Waste – June 2020 by U.S. Nuclear Waste Technical Review Board (Web Page). Available from: https://www.nwtrb.gov/our-work/fact-sheets/calcined-high-level-radioactive-waste, accessed 03/23/2023.
  • DOE-Managed Spent Nuclear Fuel at Idaho National Laboratory - JUNE 2020 by U.S. Nuclear Waste Technical Review Board (Web Page). Available from: https://www.nwtrb.gov/our-work/fact-sheets/doe-managed-spent-nuclear-fuel-at-idaho-national-laboratory, accessed 03/23/2023.
  • Merrill RA, Janke DS. Results of vitrifying Fernald OU-4 wastes. Waste Management (WM) Symposia, Tucson, AZ, USA, 1993.
  • Gimpel RF, Paine D, Roberts JL, et al. Vitrification development and experiences at Fernald, Ohio. Institute of Nuclear Materials Management (INMM) 39th Annual Meeting, Naples, FL, USA, 1998.
  • Akgunduz N, Gimpel RF, Paine D, et al. Vitrification pilot plant melter incident: final report, Report No. 40100-RP-0019. Fluor Daniel Fernald, Inc., Cincinnati, OH, USA, 1997. https://www.lm.doe.gov/cercla/documents/fernald_docs/CAT/Revised%20113085.pdf.
  • Akgunduz N, Gimpel RF, Paine D, et al. Vitrification pilot plant experiences at Fernald, Ohio. In: Schulz WW, Lombardo NJ, editors. Science and technology for disposal of radioactive tank wastes. New York, NY, USA: Springer; 1998. p. 351–361.
  • Jantzen CM. Vitrification of simulated Fernald K-65 Silo waste at low temperature, WSRC-TR-97-0061, Rev. 1. Westinghouse Savannah River Company, Savannah River Site, Aiken, SC, USA, 1999. doi:10.2172/5304.
  • Matlack KS, Pegg IL, Callow RA, et al. Final report – engineering study for DWPF bubblers, VSL-10R1770-1, Rev 0, ORP-56289, Rev 0. Vitreous State Laboratory, The Catholic University of America and EnergySolutions Federal EPC, Inc., Washington, DC, USA, 2010. doi:10.2172/1105967.
  • Chapman CC, Buelt JL, Slate SC, et al. Vitrification of Hanford wastes in a joule-heated ceramic melter and evaluation of resultant canisterized product, PNL-2904. Pacific Northwest Laboratory, Richland, WA, USA, 1979. doi:10.2172/5966019.
  • Weisenburger S. Nuclear waste vitrification in a ceramic-lined electric glass melter. IEEE Trans Ind Appl. 1982;IA-18(1):73–82.
  • Chapman CC. Nuclear waste glass melter design including the power and control systems. IEEE Trans Ind Appl. 1982;IA-18(1):65–72.
  • Chapman CC, Pope JM, Barnes SM. Electric melting of nuclear waste glasses state of the art. J Non-Cryst Solids. 1986;84(1):226–240.
  • Chapman CC, McElroy JL. Slurry-fed ceramic melter–A broadly accepted system to vitrify high-level waste). International Waste Management Conference of the American Society of Mechanical Engineers, Kyoto, Japan, 1989.
  • Bickford D. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research, WSRC-TR-93-762. Westinghouse Savannah River Co., Aiken, SC, USA, 1993. doi:10.2172/10189289.
  • Gupta R, Dani U, Nair K, et al. Challenges in retrofitting of ceramic melter in place of liquid fed metallic melter. Waste Management (WM) Symposia, Tucson, AZ, USA, 2004.
  • Matlack KS, Pegg IL. Advances in JHCM HLW vitrification technology at VSL through scaled melter testing. Ceram Trans. 2013;241:47–58.
  • Smith EC, Bowan B, Pegg IL. Application of Joule Heated Ceramic Melter (JHCM) technology for stabilization of radioactive waste in the United States. Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) 6th Exchange Forum; London, UK, 2015.
  • Hrma PR, Matyas J, Kim D-S. The chemistry and physics of melter cold cap. Spectrum 2002: exploring science-based solutions and technologies. 9th biennial International Conference on Nuclear and Hazardous Waste Management Reno, NV, USA, 2002.
  • Pegg I. Behavior of technetium in nuclear waste vitrification processes. J Radioanal Nucl Chem. 2015;35:287–292.
  • Hrma P, Kruger AA, Pokorny R. Nuclear waste vitrification efficiency: cold cap reactions. J Non-Cryst Solids. 2012;358(24):3559–3562.
  • Xu K, Hrma P, Rice JA, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests. J Am Ceram Soc. 2016;99(9):2964–2970.
  • Lee S, Hrma P, Pokorny R, et al. Effect of melter feed foaming on heat flux to the cold cap. J Nucl Mater. 2017;496:54–65.
  • Hrma P, Klouzek J, Pokorny R, et al. Heat transfer from glass melt to cold cap: gas evolution and foaming. J Am Ceram Soc. 2019;102(10):5853–5865.
  • Lee SM, McCarthy BP, Hrma P, et al. Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: effects of temperature and incorporation of solid components. J Am Ceram Soc. 2020;103(3):1615–1630.
  • Abboud AW, Guillen DP, Hrma P, et al. Heat transfer from glass melt to cold cap: computational fluid dynamics study of cavities beneath cold cap. Int J Appl Glass Sci. 2021;12(2):233–244.
  • Pokorny R, Kruger AA, Hrma P. Mathematical modeling of cold cap: effect of bubbling on melting rate. Ceram Silik. 2014;58:296–302.
  • Hodges BC, Iverson DC, Diener G. Operation of bubblers in the Savannah River Site Defense Waste Processing Facility melter. Waste Management (WM) Symposia, Phoenix, AZ, USA. 2012.
  • Smith M, Iverson D. Installation of bubblers in the Savannah River Sited Defense Waste Processing Facility melter. Waste Management (WM) Symposia, Phoenix, AZ, USA. 2010.
  • Kelly SE. A joule-heated melter technology for the treatment and immobilization of low-activity waste, RPP-48935, Rev. 0. Washington River Protection Solutions, LLC, Richland, WA, USA, 2011. Available from: https://www.osti.gov/servlets/purl/1047859.
  • Bingham PA, Connelly AJ, Hyatt NC, et al. Corrosion of glass contact refractories for the vitrification of radioactive wastes: a review. Int Mater Rev. 2011;56(4):226–242.
  • Selkregg K. Fusion cast refractories: roles of containment. Am Ceram Soc Bull. 2018;97(2):21–28.
  • Wicks G. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products, DP-MS −78 −90. Du Pont de Nemours (EI) and Co. and Savannah River Laboratory, Aiken, SC, USA, 1979. https://www.osti.gov/servlets/purl/6243471.
  • Barnes SM, Larson DE. Materials and design experience in a slurry-fed electric glass melter, PNL-3959. Pacific Northwest Laboratory, Richland, WA, USA, 1981. doi:10.2172/6241111.
  • Rankin WN. Evaluation of glass-contact materials for waste glass melters. In: Wicks GG, Ross WA, editor. Advances in ceramics Vo. 8: nuclear waste management. Columbus, OH, USA: American Ceramic Society; 1984. p. 559–566.
  • Bickford DF, Corbett RA. Material selection for nuclear waste processing facility. J Mater Energy Syst. 1986;8(2):142–149.
  • Jantzen CM, Brown KG, Imrich KJ, et al. High Cr2O3 refractory corrosion in oxidizing melter feeds: relevance to nuclear and hazardous waste vitrification. Ceram Trans. 1999;93:203–212.
  • Gan H, Lu X, Buechele AC, et al. Corrosion of chromium-rich oxide refractories in molten waste glasses. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2002. doi:10.2172/793355
  • Reigel M. Literature review: Assessment of DWPF melter and melter off-gas system lifetime, SRNL-STI-2014-00134. Savannah River National Laboratory, Aiken, SC, USA, 2015. doi:10.2172/1209038.
  • Reigel MM, Imrich KJ, Jantzen CM. Corrosion evaluation of melter materials for radioactive waste vitrification. Ceram Trans. 2015;253:83–96.
  • Lee WE, Moore RE. Evolution of in situ refractories in the 20th century. J Am Ceram Soc. 1998;81(6):1385–1410.
  • Lee WE, Zhang S. Melt corrosion of oxide and oxide–carbon refractories. Int Mater Rev. 1999;44(3):77–104.
  • McCauley RA. Corrosion: a review of some fundamentals. Ceram Trans. 1996;78:81–89.
  • Pecoraro GA. How the properties of glass melts influence the dissolution of refractory materials. In: Pye D, Joseph I, Montenero A, editors. Properties of glass-forming melts. 1st ed. Boca Raton, FL, USA: CRC Press; 2005. p. 339–390.
  • Kwong K, Petty A, Bennett J, et al. Wear mechanisms of chromia refractories in slagging gasifiers. Int J Appl Ceram Technol. 2007;4(6):503–513.
  • Trier W, Loewenstein KL. Glass furnaces: design, construction and operation. Huddersfield, UK: Society of Glass Technology; 1987.
  • Cooper A. Ceram Eng Sci Proc. 1981;2:1063–1089.
  • Mahapatra MK. Review of corrosion of refractory in gaseous environment. Int J Appl Ceram Technol. 2019;17(2):606–615.
  • Bennett J, Kwong K. Failure mechanisms in high chrome oxide gasifier refractories. Metall Mater Trans A. 2011;42:888–904.
  • Busby TS, Barker J. Simulative studies of upward drilling. J Am Ceram Soc. 1966;49(8):441–446.
  • Begley ER, Herndon PO. Upward drilling of glass contact refractories. Am Ceram Soc Bull. 1970;49(7):633–637.
  • Busby T, Cox G BEG. Upward drilling – physicochemical aspects and implications for furnace design. Glass Technol. 1971;12(4):94–102.
  • Chen J, Xiao J, Zhang Y, et al. Degradation mechanism of Cr2O3-Al2O3-ZrO2 refractories in a coal-water slurry gasifier: role of stress cracks. J Am Ceram Soc. 2020;103(5):3299–3310.
  • Nath M, Kumar P, Song S, et al. Thermo-mechanical stability of bulk (Al1–xCrx)2O3 solid solution. Ceram Int. 2019;45(9):12411–12416.
  • Sandhage KH, Yurek GJ. Indirect dissolution of sapphire into silicate melts. J Am Ceram Soc. 1988;71(6):478–489.
  • Vienna JD, Kim D-S, Muller IS, et al. Toward understanding the effect of low-activity waste glass composition on sulfur solubility. J Am Ceram Soc. 2014;97(10):3135–3142.
  • Hrma PR, Bagaasen LM, Beck AE, et al. Bulk vitrification castable refractory block protection study, PNNL-15193, PNNL-15193. Pacific Northwest National Laboratory, Richland, WA, USA, 2005. doi:10.2172/877052.
  • Marra JC, Congdon JW, KielpinsM AL, et al. Corrosion assessment of refractory materials for waste vitrification. Ceram Trans. 1996;78:273–287.
  • Gan H, Lu X, Vidensky I, et al. Corrosion of K-3 Refractory and Metal Alloys in RPP-WTP LAW Glasses, VSL-01R3540-1, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2001.
  • Matlack KS, Chaudhuri M, Gan H, et al. Glass formulation testing to increase sulfate incorporation, VSL-04R4960-1, Rev. 0, ORP-51808, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2005. doi:10.2172/1035193.
  • Matlack KS, Muller IS, Gong W, et al. Small scale melter testing of LAW salt phase separation, VSL-07R7480-1, Rev. 0, ORP-63499, Rev.0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2007. doi:10.2172/1514890
  • Jin T, Kim D, Kruger AA. Effects of sulfate on rhenium incorporation into low-activity waste glass. J Non-Cryst Solids. 2019;521:119528.
  • Skidmore CH, Vienna JD, Jin T, et al. Sulfur solubility in low activity waste glass and its correlation to melter tolerance. Int J Appl Glass Sci. 2019;10(4):558–568.
  • Hrma P, Kruger AA. Nuclear waste glasses: continuous melting and bulk vitrification. Adv Mater Res. 2008;39–40:633–640.
  • Hrma PR, Bagaasen LM, Schweiger MJ, et al. Bulk vitrification performance enhancement: refractory lining protection against molten salt penetration, PNNL-16773. Pacific Northwest National Laboratory, Richland, WA, USA, 2007. doi:10.2172/940754.
  • American Society for Testing and Materials (ASTM). Standard Test Method for Isothermal Corrosion Resistance of Refractories to Molten Glass. ASTM International; 2018. Standard No. ASTM C621-09 (2018).
  • Rankin WN. Evaluation of corrosion and deposition in the 1941 melter, DPST-82-231. Savannah River Laboratory, E. I. du Pont de Nemours & Co., Aiken, SC, USA, 1982.
  • Lu XD, Gan H, Buechele AC, et al. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts. MRS Online Proc Libr (OPL). 1999;556:279.
  • Williams M, Jantzen C, Burket P. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds, SRNL-STI-2016-00030. Savannah River National Laboratory, Aiken, SC, USA, 2016. doi:10.2172/1250758.
  • Schreiber HD. Redox processes in glass-forming melts. J Non-Cryst Solids. 1986;84(1):129–141.
  • Jantzen CM, Williams MS, Zamecnik JR, et al. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF), SRNL-STI-2015-00702. Savannah River National Laboratory, Aiken, SC, USA, 2016. doi:10.2172/1244066.
  • Jantzen CM, Imrich KJ, Brown KG, et al. High chrome refractory characterization: part I. impact of melt reduction/oxidation on the corrosion mechanism. Int J Appl Glass Sci. 2015;6(2):137–157.
  • Mickalonis JI, Imrich KJ, Jantzen CM, et al. Corrosion impact of reductant on DWPF and downstream facilities, SRNL-STI-2014-00281. Aiken (SC): Savannah River National Laboratory; 2014. doi:10.2172/1167129
  • Crichton S, Barbieri T, Tomozawa M. Solubility limits for troublesome components in a simulated Low level nuclear waste glass. Ceram Trans. 1995;61:283–290.
  • Li H, Hrma PR, Vienna JD. Sulfate retention and segregation in simulated radioactive waste borosilicate glasses. Ceram Trans. 2000;119:237–246.
  • Jin T, Kim D, Darnell LP, et al. A crucible salt saturation method for determining sulfur solubility in glass melt. Int J Appl Glass Sci. 2019;10(1):92–102.
  • Jin T, Kim D, Tucker AE, et al. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99. J Non-Cryst Solids. 2015;425:28–45.
  • Matlack KS, Pegg I, Joseph I, et al. Support for HLW Direct Feed - Phase 2, VSL-15R3440-1, Rev. 0, ORP-60672, Rev.0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2017. doi:10.2172/1347547.
  • Matlack KS, Kot WK, Muller I, et al. Support for HLW direct feed, VSL-14R3090-1, Rev. 0, ORP-60673, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2014. doi:10.2172/1909186.
  • Matlack KS, Abramowitz H, Muller IS, et al. DFLAW Glass and Feed Qualifications to Support WTP Start-Up and Flow-Sheet Development (Final Report), VSL-17R4330-1, Rev. 0, ORP-63489, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2017. doi:10.2172/1529091.
  • Matlack KS, Abramowitz H, Miller IS, et al. Final Report: Support for DF LAW Flowsheet Development Report, VSL-17R4250-1, Rev. 0, ORP-61653, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2017. doi:10.2172/1420317.
  • Gan H, Feng Z, Chaudhuri M, et al. Corrosion Testing of Inconel and K-3 in LAW Glass, ORP-68804, Rev. 0, VSL-17R4240-1, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2017. doi:10.2172/1909239.
  • Muller IS, Matlack KS, Pegg IL, et al. Enhanced LAW glass correlation - phase 3, VSL-17R4230-1, Rev. 0, ORP-63484, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2017. doi:10.2172/1512925.
  • Muller IS, Matlack KS, Pegg IL, et al. Enhanced LAW glass correlation - phase 2, VSL-17R4140-1, Rev. 0, ORP-63483, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2017. doi:10.2172/1513830.
  • Muller IS, Matlack KS, Pegg IL, et al. Enhanced LAW glass correlation - phase 1, VSL-16R4000-1, Rev. 0, ORP-60674, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2016. doi:10.2172/1347604.
  • Muller IS, Chaudhuri M, Gan H, et al. Improved high-alkali low-activity waste formulations (Final Report), VSL-15R3290-1, Rev 0, ORP-63488, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2015. doi:10.2172/1529004.
  • Muller IS, Matlack KS, Gan H, et al. Waste loading enhancements for Hanford LAW glasses, VSL-10R1790-1, Rev. 0, ORP-48578, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2010. doi:10.2172/1004083.
  • Matlack KS, Joseph I, Gong W, et al. Glass formulation development and DM10 Melter Testing with ORP LAW Glasses, VSL-09R1510-2, Rev 0, ORP-56296, Rev 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2009. doi:10.2172/1105979.
  • Matlack KS, Joseph I, Gong W, et al. Final report - enhanced law glass formulation testing, VSL-07R1130-1, Rev 0, ORP-56293, Rev 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2007. doi:10.2172/1105974.
  • Matlack KS, Gong W, Muller IS, et al. Final Report - LAW Envelope A and B glass formulations testing in increase waste loading, VSL-06R6900-1, Rev. 0, ORP-56322, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2006. doi:10.2172/1109497.
  • Muller IS, Joseph I, Pegg IL. Preparation and testing of LAW high-alkali correlation and augmentation matrix glasses (Final Report), VSL-06R6480-3, Rev. 0, ORP-63500, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2006. doi:10.2172/1523513.
  • Matlack KS, Gong W, Muller IS, et al. Final Report - LAW envelope C glass formulation testing to increase waste loading, VSL-05R5900-1, Rev 0, ORP-56323, Rev 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2005. doi:10.2172/1109496.
  • Muller IS, Goloski L, Pegg IL, et al. LAW glass formulation to support AN-104 actual waste testing (Final Report), VSL-04R4470-1, Rev. 0, ORP-63496, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2004. doi:10.2172/1523506.
  • Muller IS, Pegg IL, Rielley E, et al. LAW glass formulation to support AZ-101 actual waste testing (Final Report), VSL-03R3470-3, Rev. 0, ORP-63494, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2003. doi:10.2172/1528888.
  • Muller IS, Pegg IL, Rielley E, et al. LAW glass formulation to support AP-101 actual waste testing (Final Report), VSL-03R3470-2, Rev 0, ORP-63486, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2003. doi:10.2172/1523467.
  • Muller IS, Pegg IL, McKeown D, et al. LAW glass formulation to support AZ-102 actual waste testing (Final Report), VSL-03R3470-1, Rev. 0, ORP-63493, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2003. doi:10.2172/1515181.
  • Muller IS, Pegg IL, Rielley E, et al. LAW glass formulation to support melter runs with simulants, VSL-03R3460-2, Rev. 0, ORP-58837, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2003. doi:10.2172/1855831.
  • Muller IS, Pegg IL, Gan H, et al. Final Report. Baseline LAW glass formulation testing, VSL-03R3460-1, Rev. 0, ORP-59016, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2003. doi:10.2172/1186012.
  • Muller IS, Gilbo K, Chaudhuri M, et al. K-3 Refractory corrosion and sulfate solubility model enhancement (Final Report), VSL-18R4360-1, Rev. 0, ORP-63490, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2018. doi:10.2172/1513833.
  • Vienna JD, Heredia-Langner A, Cooley SK, et al. Glass property-composition models for support of Hanford WTP LAW Facility operation, PNNL-30932, Rev. 2, EWG-RPT-029, Rev. 2. Pacific Northwest National Laboratory, Richland, WA, USA, 2022. doi:10.2172/1862823.
  • Smith-Gray NJ, Sargin I, Beckman S, et al. Machine learning to predict refractory corrosion during nuclear waste vitrification. MRS Adv. 2021;6(4):131–137.
  • Fox KM. Crystallization in high level waste (HLW) Glass Melters: operational experience from the Savannah River Site, SRNL-STI-2013-00724, Rev. 0. Savannah River National Laboratory, Aiken, SC, USA, 2014. doi:10.2172/1122185.
  • Allen TL, Iverson DC, Plodinec MJ. History of the small cylindrical melter, DP-1676. Savannah River Laboratory, E. I. du Pont de Nemours & Co., Aiken, SC, USA, 1985.
  • Iverson DC, Bickford DF. Evaluation of materials performance in a large-scale glass melter after Two years of vitrifying simulated SRP defense waste. MRS Online Proc Lib (OPL). 1984;44:839–845.
  • Matlack KS, Gong W, Bardakci T, et al. Integrated DM1200 Melter Testing Of HLW C-106/AY-102 Composition Using Bubblers, VSL-03R3800-1, Rev. 0, ORP-51439, Rev 0. Vitreous State Laboratory, The Catholic University of America, Washington DC, USA, 2003. doi:10.2172/1034652.
  • Matlack K, Diener GA, Bardakci T, et al. Final Report Summary of DM1200 Operation at VSL, VSL-06R6710-2, Rev. 0, ORP-51434, Rev. 0. Vitreous State Laboratory, The Catholic University of America, Washington, DC, USA, 2006. doi:10.2172/1034643.
  • Smith E, Diener G, Joseph I, et al. Waste vitrification melter throughput enhancement through increased operating temperature. Tucson, AZ, USA: Waste Management (WM) Symposia; 2005.
  • Diener G. RPP-WTP LAW Pilot Melter disassembly report, REP-PLT-026, Rev. 0, ORP-68750, Rev. 0. Duratek Inc., Columbia, MD, USA, 2004. doi:10.2172/1906870.
  • Hardy JS, Jin T, Hall MA, et al. Vitrification of high-Cr glass in research-scale melter, PNNL-30141, Rev. 0.0, EWG-RPT-028, Rev. 0.0 Pacific Northwest National Laboratory, Richland, WA, USA, 2020. doi:10.2172/1784531.
  • Matyáš J, Sevigny GJ, Schweiger MJ, et al. Research-scale melter: an experimental platform for evaluating crystal accumulation in high-level waste glasses. Ceram Trans. 2015;253:49–58.
  • Matyáš J, Sevigny GJ, Venarsky JJ, et al. Evaluation of crystal accumulation in high level waste glasses with research-scale melter, PNNL-27419, EWG-RPT-018. Pacific Northwest National Laboratory, Richland, WA, USA, 2018. doi:10.2172/1868935.
  • Smith-Gray N, Bussey J, McCloy J. Microstructural examination of interactions between chromia-based refractory and nuclear glass in a melter. J Am Ceram Soc. 2022;105(12):7760–7769.
  • Imrich KJ, Iverson DC. Metallurgical evaluation of an inconel 690 insert from a radioactive waste glass melter pour spout. Ceram Trans. 2000;107:643–651.
  • Amerine DB. Basic Data Report – Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area, DPSP-80-1033. E. I. du Pontde Nemours& Company, Savannah River Plant, Aiken, SC, USA, 1982. doi:10.2172/10182928.
  • Smith E, Butler T, Ciorneiu B, et al. Advanced joule teated melter design to reduce Hanford Waste Treatment Plant operating costs. Waste Management (WM) Symposia. Phoenix, AZ, USA, 2011.
  • Vienna J, Lumetta N, Kim D, et al. Robust and high-waste loaded glass formulations for Hanford Low-Activity Waste. Waste Management (WM) Symposia. Phoenix, AZ, USA, 2019.
  • Dixon DR, Stewart CM, Venarsky JJ, et al. Vitrification of Hanford Tank Waste 241-AP-105 in a Continuous Laboratory-Scale Melter, PNNL-27775, RPT-DFTP-010, Rev. 0. Pacific Northwest National Laboratory, Richland, WA, USA, 2018. doi:10.2172/1476729.
  • Dixon DR, Stewart CM, Venarsky JJ, et al. Vitrification of Hanford Tank Waste 241-AP-107 in a Continuous Laboratory-Scale Melter, PNNL-28361, Rev. 0, RPT-DFTP-014, Rev. 0. Pacific Northwest National Laboratory, Richland, WA, USA, 2019. doi:10.2172/1505629.
  • Richardson B. Melter glass removal and dismantlement, ORNL/TM-2000/324. Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2000. doi:10.2172/885718.
  • Plodinec J, Jang PR, Long Z, et al. Use of optical and imaging techniques for inspection of off-line joule-heated melter at the West Valley Demonstration Project. Waste Management (WM) Symposia. Tucson, AZ, USA, 2003.
  • Pieczynski T. West Valley Demonstration Project waste characterization of vitrification melter, WVDP-577, Rev. 1. Savannah River National Laboratory, CH2MHILL, B&W West Valley, LLC, West Valley, NY, USA, 2014. https://www.nrc.gov/docs/ML1429/ML14296A529.pdf.
  • Iverson DC, Imrich KJ, Bickford DF, et al. Examination of DWPF Melter materials after 8 years of service, WSRC-MS-2003-00318. Westinghouse Savannah River Company, Aiken, SC, USA, 2003. doi:10.2172/810561.
  • Iverson DC, Imrich KJ, Bickford DF, et al. Examination of DWPF melter materials after 8 years of service. Ceram Trans. 2004;155:217–226.
  • Fox KM. Visual inspection of Defense Waste Processing Facility Melter 2 interior after end of service, SRNL-STI-2017-00428. Savannah River National Laboratory, Aiken, SC, USA, 2018. doi:10.2172/1434645.
  • Hrma P. Dissolution of a solid body governed by surface free convection. Chem Eng Sci. 1970;25(11):1679–1688.
  • Tsotridis G. The contribution of surface tension driven flows in flux line erosion. J Appl Phys. 1997;81(3):1231–1243.
  • Pötschke J. Brüggmann C. premature wear of refractories due to marangoni-convection. Steel Res Int. 2012;83(7):637–644.
  • Lian P, Huang A, Gu H, et al. Towards prediction of local corrosion on alumina refractories driven by marangoni convection. Ceram Int. 2018;44(2):1675–1680.
  • Kim D. Glass property models, constraints, and formulation approaches for vitrification of high-level nuclear wastes at the US Hanford Site. J Korean Ceram Soc. 2015;52(2):92–102.
  • Vienna JD, Piepel GF, Kim D-S, et al. Update of Hanford glass property models and constraints for use in estimating the glass mass to be produced at Hanford by implementing current enhanced glass formulation efforts, PNNL-25835. Pacific Northwest National Laboratory, Richland, WA, USA, 2016. doi:10.2172/1772236.
  • Lyon KC. Calculation of surface tensions of glasses. J Am Ceram Soc. 1944;27(6):186–189.
  • Kucuk A, Clare AG, Jones L. An estimation of the surface tension for silicate glass melts at 1400°C using statistical analysis. Glass Technol. 1999;40(5):149–153.
  • Scholze H. Glass: nature, structure, and properties. New York, NY, USA: Springer; 2012.
  • Weirauch DA. The surface tension of glass-forming melts. In: Pye D, Joseph I, Montenero A, editors. Properties of glass-forming melts. 1st ed. Boca Raton, FL, USA: CRC Press; 2005. p. 143–192.
  • Tian YL, Guo SG, Wu DL. The study on measurement method of glass melts’ surface tension at high temperature. Adv Mater Res. 2014;889-890:732–736.
  • Askari M, Cameron AM, Oakley J. The determination of surface tension at elevated temperatures by drop image analysis. High Temp Technol. 1990;8(3):201–207.
  • Brosnan DA. Corrosion of refractories. In: Schacht CA, editor. Refractories handbook. New York, NY, USA: Marcel Dekker, Inc.; 2004. p. 39–77.
  • Nishikawa T, Todoriki H, Itoh H, et al. Development of numerical prediction model of refractory corrosion for glass melting tank. Reports of the Research Laboratory, Asahi Glass Co., Ltd., 2005. Available from: https://www.agc.com/en/innovation/library/pdf/55-04.pdf.
  • Xu LY, Cheng YF. Electrochemical characterization and CFD simulation of flow-assisted corrosion of aluminum alloy in ethylene glycol–water solution. Corros Sci. 2008;50(7):2094–2100.
  • Hu H, Cheng YF. Modeling by computational fluid dynamics simulation of pipeline corrosion in CO2-containing oil-water two phase flow. J. Petrol Sci Eng. 2016;146:134–141.
  • Material to Material Calculator (Web Page). Available from: https://thermocalc.com/products/thermo-calc/material-to-material-calculator/, accessed 03/23/2023.
  • Lu X, Kim D-S, Vienna JD. Impacts of constraints and uncertainties on projected amount of Hanford low-activity waste glasses. Nucl Eng Des. 2021;385:111543.