584
Views
1
CrossRef citations to date
0
Altmetric
Full Critical Review

Statistically equivalent representative volume elements (SERVE) for material behaviour analysis and multiscale modelling

, &
Pages 1158-1191 | Received 31 Aug 2022, Accepted 20 Jun 2023, Published online: 22 Aug 2023

REFERENCES

  • Furrer D, Noraas R, Brough D. Industrial applications of microstructural characterization – current and potential future issues and applications, statistical methods for materials science. 1st ed. Boca Raton: CRC Press; 2019.
  • Dallair M, Furrer D. Quantitative metallography of titanium alloys. Adv Mater Processes. 2004;162(12):25–28.
  • Tiley J, Searles T, Lee E, et al. Quantification of microstructural features in α/β titanium alloys. Mater Sci Eng A. 2004;372(1–2):191–198. doi:10.1016/j.msea.2003.12.008
  • Olson GB. Computational design of hierarchically structured materials. Science. 1997;277:1237–1242. doi:10.1126/science.277.5330.1237
  • Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance. Mater Charact. 2018;140:103–112. doi:10.1016/j.matchar.2018.03.041
  • Jou H-J. Microstructure modeling of third generation disk alloys. NASA/CR—. 2010: 2010–216748. https://ntrs.nasa.gov/citations/20100026665.
  • Pinz M, Weber G, Stinville JC, et al. Data-driven Bayesian model for predicting fatigue crack nucleation in polycrystalline Ni-based superalloys. npj Comp Mater. 2022;8:39. doi:10.1038/s41524-022-00727-5
  • Sangid MD, Sehitoglu H, Maier HJ, et al. Role of microstructure in predicting fatigue performance, 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 23 - 26 April 2012, 2012; Honolulu, Hawaii.
  • Stinville JC, Lenthe WC, Miao J, et al. A combined grain scale elastic–plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater. 2016;103:461–473. doi:10.1016/j.actamat.2015.09.050
  • DeCost BL, Francis T, Holm EA. Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 2017;133:30–40. doi:10.1016/j.actamat.2017.05.014
  • Ge M, Su F, Zhao Z, et al. Deep learning analysis on microscopic imaging in materials science. Mater Today Nano. 2020;11:100087, doi:10.1016/j.mtnano.2020.100087
  • Noraas R, Venkatesh V, Rettberg L, et al. Recognition and quantification of dual phase titanium alloy microstructures using convolutional neural networks. The 14th World Conference on Titanium, MATEC Web of Conferences. 2020;321:11084. doi:10.1051/matecconf/202032111084
  • Noraas R, Somanath N, Giering M, et al. Structural material property tailoring of dual phase titanium alloy microstructures using deep neural networks, AIAA Scitech 2020 Forum, 6-10 January 2020, 2020 Orlando, FL https://doi.org/10.2514/6.2020-1151.
  • Larmuseau M, Sluydts M, Theuwissen K, et al. Compact representations of microstructure images using triplet networks. NPJ Comp Mater. 2020;6:156, doi:10.1038/s41524-020-00423-2
  • Feri LE, Ahn J, Lutfillohonov S, et al. A three-dimensional microstructure recognition framework for permeable pavement analysis based on a 3D-IWGAN with enhanced gradient penalty. Sensors. 2021;21:3603, doi:10.3390/s21113603
  • Fu J, Cui S, Cen S, et al. Statistical characterization and reconstruction of heterogeneous microstructures using deep neural network. Comp Meth Appl Mech Engr. 2021;373:113516, doi:10.1016/j.cma.2020.113516
  • Jangid DK, Brodnik NR, Khan A, et al. 3D grain shape generation in polycrystal using generative adversarial networks. Integr Mater Manuf Innov. 2022;11:71–84. doi:10.1007/s40192-021-00244-1
  • Becker R, Richmond O. Incorporation of microstructural geometry in material modelling. Modell Simul. Mater. Sci. Engr. 1994;2:439–454. doi:10.1088/0965-0393/2/3A/002
  • Spear AD, Hochhalter JD, Cerrone AR, et al. A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue crack propagation. Fat Frac. Engr. Mater Struct. 2016;39:737–751. doi:10.1111/ffe.12449
  • Cheng J, Tu X, Ghosh S. Wavelet-enriched adaptive hierarchical FE model for coupled crystal plasticity-phase field modeling of crack propagation in polycrystalline microstructures. Comp Meth Appl Mech Eng. 2020;361:112757. doi:10.1016/j.cma.2019.112757
  • Tu X, Ray A, Ghosh S. A coupled crystal plasticity FEM and phase-field model for crack evolution in microstructures of 7000 series aluminum alloys. Eng Fract Mech. 2020a;230:106970. doi:10.1016/j.engfracmech.2020.106970
  • Maloth T, Ghosh S. Coupled crystal plasticity phase-field model for ductile fracture in polycrystalline microstructures. Int J Multiscale Comp Eng. 2023;21(2):1–19. doi:10.1615/IntJMultCompEng.2022042164
  • Shen J, Kotha S, Noraas R, et al. Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy. Int. Jour. Plast. 2022;151:103182. doi:10.1016/j.ijplas.2021.103182
  • Kotha S, Ozturk D, Smarslok B, et al. Uncertainty quantified parametrically homogenized constitutive models for microstructure-integrated structural simulations. Integ Mater Manuf Innov IMMI. 2020a;9:322–338. doi:10.1007/s40192-020-00187-z
  • Kotha S, Ozturk D, Ghosh S. Uncertainty-quantified parametrically homogenized constitutive models (UQ-PHCMS) for dual-phase alpha/beta titanium alloys. npj Comp Mater. 202b;6:117. doi:10.1038/s41524-020-00379-3
  • Liu X, Furrer DU, Kosters J, et al. Vision 2040: A roadmap for integrated, multiscale modeling and simulation of materials and systems. 2018 NASA/CR-2018-219771, E-19477, GRC-E-DAA-TN52454.
  • Dimiduk DM, Parthasarathy TA, Rao SI, et al Predicting the microstructure-dependent mechanical performance of materials for early-stage design. In: Ghosh S., Castro JM., and Lee JK, editors, Materials processing and design: modeling, simulation, and applications, NUMIFORM 2004, AIP CP712, American institute of physic. New York: Springer-Verlag: 2004. p. 1705–1710.
  • Allison J, Backman D, Christodoulou L. Integrated computational materials engineering: a new paradigm for the global materials profession. JOM. 2006a;58(11):25–30. doi:10.1007/s11837-006-0223-5
  • Backman DG, Wei DY, Whitis DD, et al. ICME at GE: accelerating the insertion of New materials and processes. JOM. 2006;58(11):36–41. doi:10.1007/s11837-006-0225-3
  • Drosback M. Materials genome initiative: advances and initiatives. JOM. 2014;66(3):334–335. See also Available from: https://www.mgi.gov/sites/default/files/documents/MGI-2021-Strategic-Plan.pdf.
  • Ghosh S, Groeber MA. Developing virtual microstructures and statistically equivalent representative volume elements for polycrystalline materials. crystal plasticity: atomistics to macroscale (section editors W. Cai and S. ghosh) In: Yip S. and Andreoni W. Handbook of materials modeling, 2nd ed, methods: theory and modeling. Springer International Publishing AG; 2020.
  • Ghosh S, Przybyla C, Woodward C. Integrated Computational Materials Engineering (ICME): Advancing computational and experimental methods, Springer Nature Switzerland AG, 2020.
  • Furrer DU, Dimiduk DM, Cotton JD, et al. Making the case for a model-based definition of engineering materials. Integ Mater Manuf Innov. 2017;6:249–263. http://link.springer.com/article/10.1007s40192-017-0102-7.
  • Shen G, Rollins J, Furrer D. Microstructure modeling of forged Waspaloy discs. Superalloys 1996, eds. R. D. Kissinger, et. al., TMS, 1996. p. 613–620.
  • Gayda J, Furrer D. Dual-microstructure heat treatment. Adv Mater Processes. 2003;July:36–39.
  • Glavicic MG, Venkatesh V. Integrating computational materials engineering of titanium: current capabilities being developed under the metals affordability initiative. JOM. 2014;66(7):1310–1320. doi:10.1007/s11837-014-1013-0
  • Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Sol. 1963;11(5):357–372. doi:10.1016/0022-5096(63)90036-X
  • Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Sol. 1963;11(2):127–140. doi:10.1016/0022-5096(63)90060-7
  • Kröner E. Bounds for effective elastic moduli of disordered materials. J Mech Phys Solids. 1977;25:137–155. doi:10.1016/0022-5096(77)90009-6
  • Swaminathan S, Ghosh S. Statistically equivalent representative volume elements for composite microstructures. Part I: With interfacial debonding. J Comp Mater. 2006a;40(7):605–621. doi:10.1177/0021998305055274
  • Swaminathan S, Ghosh S, Pagano NJ. Statistically equivalent representative volume elements for composite microstructures. Part I: Without damage. J Comp Mater. 2006b;40(7):583–604. doi:10.1177/0021998305055273
  • Pinz M, Weber G, Lenthe W, et al. Microstructure-based statistically equivalent RVEs for sub-grain γ − γ′ microstructures of Nickel-base superalloys. Acta Mater. 2018;157(15):245–258. doi:10.1016/j.actamat.2018.07.034
  • Tu X, Shahba A, Shen J, et al. Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys. Int Jour Plast. 2019;115:268–292. doi:10.1016/j.ijplas.2018.12.002
  • Tu X. Developing image-based crystal plasticity models for deformation and crack propagation in polycrystalline 7000-series aluminum alloys. [PhD thesis]. Johns Hopkins University; 2020b.
  • Uchic MD, Groeber M, Wheeler R, et al. Augmenting the 3D characterization capability of the dual beam FIB SEM. Micros. Microanal. 2004;10(Supp 2):1136–1137. doi:10.1017/S1431927604886859
  • Uchic MD, Groeber MA, Dimiduk DM, et al. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-sem. Scripta Mat. 2006;55(1):23–28. doi:10.1016/j.scriptamat.2006.02.039
  • Groeber MA, Haley BK, Uchic MD, et al. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mat Char. 2006;57(4-5):259–273. doi:10.1016/j.matchar.2006.01.019
  • Echlin MP, Husseini NS, Nees JA, et al. A New femtosecond laser-based tomography technique for multiphase materials. Adv Mater. 2011;23:2339–2342. doi:10.1002/adma.201003600
  • Echlin MP, Polonsky AT, Lamb J, et al. Recent developments in femtosecond laser-enabled Tribeam systems. JOM. 2021;73(12):4258–4269. doi:10.1007/s11837-021-04919-0
  • Juul Jensen D, Lauridsen EM, Margulies L, et al. X-ray microscopy in four dimensions. Mater.Tod. 2006;9:18–25. doi:10.1016/S1369-7021(05)71334-1
  • Thornton K, Poulsen HF. Three-dimensional materials science: an intersection of three-dimensional reconstructions and simulations. MRS Bull. 2008;33:587–595. doi:10.1557/mrs2008.123
  • Ludwig W, Reischig P, King A, et al. Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum. 2009;80:033905. doi:10.1063/1.3100200
  • Lienert U, Li SF, Hefferan CM, et al. High-Energy diffraction microscopy at the advanced photon source. JOM. 2011;63(7):70–77. doi:10.1007/s11837-011-0116-0
  • Schuren JC, Shade PA, Bernier JV, et al. New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 2015;19:235–244. doi:10.1016/j.cossms.2014.11.003
  • Ostoja-Starzewski M. Material spatial randomness: from statistical to representative volume element. Prob Eng Mech. 2006;21(2):112–132. doi:10.1016/j.probengmech.2005.07.007
  • Ostoja-Starzewski M. Microstructural randomness and scaling in mechanics of materials. New York: Chapman and Hall/CRC; 2007.
  • McDowell D, Ghosh S, Kalidindi S. Representation and computational structure-property relations of random media. JOM. 2011;63(3):45–51. doi:10.1007/s11837-011-0045-y
  • Madej L. Digital/virtual microstructures in application to metals engineering – A review. Arch. Civil Mech. Engr. 2017;17:839–854. doi:10.1016/j.acme.2017.03.002
  • Bargmann S, Klusemann B, Markmann J, et al. Generation of 3D representative volume elements for heterogeneous materials: a review. Prog Mater Sci. 2018;96:322–384. doi:10.1016/j.pmatsci.2018.02.003
  • Bostanabad R, Zhang Y, Li X, et al. Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog Mater Sci. 2018;95:1–41. doi:10.1016/j.pmatsci.2018.01.005
  • Jones RM. Mechanics of composite materials. New York: Hemisphere Publishing Corporation; 1975.
  • Drugan WJ, Willis JR. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Sol. 1996;44:1497–1524. doi:10.1016/0022-5096(96)00007-5
  • Torquato S. Random heterogeneous materials. New York: Springer-Verlag; 2002.
  • Pyrz R. Quantitative description of the microstructure of composites. Part I: morphology of unidirectional composite systems. Comp Sci Tech. 2006;50(2):197–208. doi:10.1016/0266-3538(94)90141-4
  • Böhm JH, Rammerstorfer FG, Weissenbek E. Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. comp. Mater. Sci. 1993;1:177–194.
  • Sun CT, Vaidya RS. Prediction of composite properties from a representative volume element. compos. Sci. Tech. 1996;56:171–179.
  • Zeman J, Sejnoha M. From random microstructures to representative volume elements. Modell. Simul. Mat. Sci. Engin. 2007;15(4):S325–S335. doi:10.1088/0965-0393/15/4/S01
  • Weissenbek E, Boehm HJ, Rammerstoffer FG. Micromechanical investigations of arrangement effects in particle reinforced metal matrix composites. Comput Mater Sci. 1994;3(2):263–278. doi:10.1016/0927-0256(94)90141-4
  • Yin X, To A, McVeigh C, et al. Statistical volume element method for predicting microstructure–constitutive property relations. Comp. Meth. Appl. Mech. Engrg. 2008;197:3516–3529. doi:10.1016/j.cma.2008.01.008
  • Fullwood DT, Niezgoda SR, Adams BL, et al. Microstructure sensitive design for performance optimization. Prog. Mater. Sci. 2010;55:477–562. doi:10.1016/j.pmatsci.2009.08.002
  • Qidwai SM, Turner DM, Niezgoda SR, et al. Estimating the response of polycrystalline materials using sets of weighted statistical volume elements. Acta Mater. 2012;60:5284–5299. doi:10.1016/j.actamat.2012.06.026
  • Ghosh S, Kubair DV. Exterior statistics-based boundary conditions for optimal representative volume elements in elastic composites. Jour Mech Phys Sol. 2016;95:1–24. doi:10.1016/j.jmps.2016.05.022
  • Kubair DV, Ghosh S. Exterior statistics based boundary conditions for establishing statistically equivalent representative volume elements of statistically nonhomogeneous elastic microstructures. Int Jour Sol Struct. 2017;112:106–121. doi:10.1016/j.ijsolstr.2017.02.015
  • Kubair DV, Pinz M, Kollins K, et al. Role of exterior statistics-based boundary conditions for property-based statistically equivalent RVEs of polydispersed elastic composites. Jour Comp Mater. 2018;52(21):2919–2928. doi:10.1177/0021998318758498
  • Weber G, Pinz M, Ghosh S. Machine learning-enabled self-consistent parametrically-upscaled crystal plasticity model for Ni-based superalloys. Comp Meth Appl Mech Engng. 2022;402:115384. doi:10.1016/j.cma.2022.115384
  • Willis JR Elasticity theory of composites, mechanics of solids, The R. hill 60th anniversary volume: 1982, Oxford; Pergamon Press; 1982. p. 653–686
  • Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct. 2003;40(13-14):3647–3679. doi:10.1016/S0020-7683(03)00143-4
  • Jiao Y, Stillinger F, Torquato S. Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys Rev E. 2007;76(3):031110. doi:10.1103/PhysRevE.76.031110
  • Echlin MP, Lenthe WC, Pollock TM. Three-dimensional sampling of material structure for property modeling and design. Integ Mater Manuf Innov. 2014a;3(1):21.
  • Bagri A, Weber G, Stinville JC, et al. Microstructure and property-based statistically equivalent RVEs for polycrystalline Ni-based superalloys with twins. Metall Mater Trans A. 2018;49(11):5727–5744. doi:10.1007/s11661-018-4858-y
  • Dehoff RT. Quantitative serial sectioning analysis: preview. J Micros. 1983;131:259–263. doi:10.1111/j.1365-2818.1983.tb04254.x
  • Kral M, Spanos G. Three-dimensional analysis of proeutectoid cementite precipitates. Acta Mater. 1999;47:711–724. doi:10.1016/S1359-6454(98)00321-8
  • Kral MV, Mangan MA, Spanos G, et al. Three-dimensional analysis of microstructure. Mater. Char. 2000;45:17–23. doi:10.1016/S1044-5803(00)00046-2
  • Alkemper J, Voorhees P. Quantitative serial sectioning analysis. J Micros. 2001;201:388–394. doi:10.1046/j.1365-2818.2001.00832.x
  • Spowart JE, Mullens HM, Puchala BT. Collecting and analyzing microstructures in three dimensions: a fully automated approach. JOM. 2003;55:35–37. doi:10.1007/s11837-003-0173-0
  • Uchic MD. Serial sectioning methods for generating 3D characterization data of grain- and precipitate-scale microstructures. In: Ghosh S, Dimiduk D, editors. Comp. meth. microstructure-property relationships. New York: Springer; 2011. p. 53–98.
  • Levinson AJ, Rowenhorst DJ, Sharp KW, et al. Automated methods for the quantification of 3D woven architectures. Mater Char. 2017;124:241–249. doi:10.1016/j.matchar.2017.01.005
  • Inkson BJ, Mulvihill M, Möbus G. 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater. 2001;45:753–758. doi:10.1016/S1359-6462(01)01090-9
  • Groeber MA. Digital representation of materials grain structure. In: Ghosh S, Dimiduk D, editors. Comp. meth. microstructure-property relationships. New York: Springer; 2006. p. 53–98.
  • Lewis AC, Bingert JF, Rowenhorst DJ, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater Sci Engr A. 2006;418:11–18. doi:10.1016/j.msea.2005.09.088
  • Echlin MP, Straw M, Randolf S, et al. The TriBeam system: femtosecond laser ablation in situ SEM. Mater Char. 2015;100:1–15. doi:10.1016/j.matchar.2014.10.023
  • Li M, Ghosh S, Richmond O, et al. Three-dimensional characterization and modeling of particle reinforced metal matrix composites: Part I: quantitative description of microstructural morphology. Mater Sci Engin A. 1999a;265:153–173. doi:10.1016/S0921-5093(98)01132-0
  • Li M, Ghosh S, Richmond O, et al. Three-dimensional characterization and modeling of particle reinforced metal matrix composites: Part II: damage characterization. Mater Sci Engin A. 1999b;265:221–240. doi:10.1016/S0921-5093(98)01133-2
  • Bossi RH, Georgeson GE. The application of X-ray computed tomography to materials development. JOM. 1991;43(9):8–15. doi:10.1007/BF03222228
  • Larson BC, Yang W, Ice GE, et al. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature. 2002;415:887–890. doi:10.1038/415887a
  • Ice GE, Pang JWL, Barabash RI, et al. Characterization of three-dimensional crystallographic distributions using polychromatic X-ray microdiffraction. Scripta Mater. 2006;55:57–62. doi:10.1016/j.scriptamat.2006.02.046
  • Bhandari Y, Sarkar S, Groeber MA, et al. 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comp Mater Sci. 2007;41:222–235. doi:10.1016/j.commatsci.2007.04.007
  • Plimpton S, Battaile C, Chandross M, et al. Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo. Sandia report SAND2009-6226, October 2009.
  • Chen LQ. Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 2002;32(1):113–140. doi:10.1146/annurev.matsci.32.112001.132041
  • Wang Y, Chen LQ and Zhou N. Simulation of microstructural evolution using the phase field method. In: Kaufmann EN editor. Characterization of materials, volume 1, John Wiley & Sons. Inc; 2012. p. 216– 248
  • Xu T, Sarkar S, Li M, et al. Quantifying microstructures in isotropic grain growth from phase field modeling: methods. Acta Mater. 2012;60:4787–4799. doi:10.1016/j.actamat.2012.05.040
  • Kühbach M, Gottstein G, Barrales-Mora L. A statistical ensemble cellular automaton microstructure model for primary recrystallization. Acta Mater. 2016;107:366–376. doi:10.1016/j.actamat.2016.01.068
  • Schwarze C, Kamachali RD, Kühbach M, et al. Computationally efficient phase-field simulation studies using RVE sampling and statistical analysis. Comput Mater Sci. 2018;147:204–216. doi:10.1016/j.commatsci.2018.02.005
  • Quey R, Dawson PR, Barbe F. Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comp. Meth Appl. Mech. Engrg. 2011;200:1729–1745. doi:10.1016/j.cma.2011.01.002
  • Groeber MA, Ghosh S, Uchic MD, et al. A framework for automated analysis and representation of 3D polycrystalline microstructures, part 1: statistical characterization. Acta Mat. 2008a;56(6):1257–1273. doi:10.1016/j.actamat.2007.11.041
  • Groeber MA, Ghosh S, Uchic MD, et al. A framework for automated analysis and representation of 3D polycrystalline microstructures, part 2: synthetic structure generation. Acta Mat. 2008b;56(6):1274–1287. doi:10.1016/j.actamat.2007.11.040
  • Groeber MA, Jackson M. DREAM.3d: A digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov. 2014;3:56–72. doi:10.1186/2193-9772-3-5
  • Jackson M, Groeber M, Donegan S, et al. Advancements to the digital representation environment for analysis of materials in 3-dimensions—DREAM.3D. Micros. Microanal. 2019;25(Supp 2):176–177. doi:10.1017/S1431927619001612
  • Richter H. Mote3D: an open-source toolbox for modelling periodic random particulate microstructures. Modell. Simul. Mater. Sci. Engr. 2017;25:035011, doi:10.1088/1361-651X/aa629a
  • Latypov MI, Khan A, Lang CA, et al. Bisque for 3D materials science in the cloud: microstructure–property linkages. Integr Mater Manuf Innov. 2019;8:52–65. doi:10.1007/s40192-019-00128-5
  • Hart KA, Rimoli JJ. Generation of statistically representative microstructures with direct grain geometry control. Comput. Methods Appl. Mech. Engrg. 2020;370:113242, doi:10.1016/j.cma.2020.113242
  • Henry Serrao P, Sandfeld S, Prakash A. Optimic: A tool to generate optimized polycrystalline microstructures for materials simulations. Software X. 2021;15:100708.
  • Usseglio-Viretta FLE, Patel P, Bernhardt E, et al. MATBOX: An open-source microstructure analysis toolbox for microstructure generation, segmentation, characterization, visualization, correlation and meshing. Software X. 2022;17:100915.
  • Saylor DM, Fridy J, El-Dasher BS, et al. Statistically representative 3D microstructures based on orthogonal observation sections. Met Mater Trans A. 2004;35:1969–1979. doi:10.1007/s11661-004-0146-0
  • Saheli G, Garmestani H, Adams B. Microstructure design of a two phase composite using two-point correlation functions. J. Comp Aided Mat Des. 2004;11(2):103–115. doi:10.1007/s10820-005-3164-3
  • Sundararaghavan V, Zabaras N. Classification and reconstruction of three-dimensional microstructures using support vector machines. Comp Mater Sci. 2005;32(2):223–239. doi:10.1016/j.commatsci.2004.07.004
  • Rollett AD, Robert C, Saylor D. Three dimensional microstructures: statistical analysis of second phase particles in AA7075-T651. Mater Sci Forum. 2006;519-521:1–10. doi:10.4028/www.scientific.net/MSF.519-521.1
  • Rollett AD, Lee SB, Campman R, et al. Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu Rev Mater Res. 2007;37:627–658. doi:10.1146/annurev.matsci.37.052506.084401
  • Jiao Y, Padilla E, Chawla N. Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction. Acta Mater. 2013;61:3370–3377. doi:10.1016/j.actamat.2013.02.026
  • MacSleyne J, Uchic M, Simmons J, et al. Three-dimensional analysis of secondary gamma precipitates in René-88 DT and UMF-20 superalloys. Acta Math. 2009;57(20):6251–6267. doi:10.1016/j.actamat.2009.08.053
  • Niezgoda SR, Turner DM, Fullwood DT, et al. Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Mater. 2010;58:4432–4445. doi:10.1016/j.actamat.2010.04.041
  • Baniassadi M, Garmestani H, Li DS, et al. 3-phase solid oxide fuel cell anode microstructure realization using 2-point correlation functions. Acta Mat. 2011;59(1):30–43. doi:10.1016/j.actamat.2010.08.012
  • Guo EY, Chawla N, Jing T, et al. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mater Charac. 2014;89:33–42. doi:10.1016/j.matchar.2013.12.011
  • Hasanabadi A, Baniassadi M, Abrinia K, et al. Optimization of solid oxide fuel cell cathodes using two-point correlation functions. comp. Mater. Sci. 2016;111:107–115.
  • Kumar A, Nguyen L, DeGraef M, et al. A Markov random field approach for microstructure synthesis. Mod Simul Mater Sci Eng. 2016;24(3):1–13. doi:10.1088/0965-0393/24/3/035015
  • Acar P, Sundararaghavan V. A Markov random field approach for modeling spatio-temporal evolution of microstructures. Modell. Simul. Mater. Sci. Engr. 2016;24:075005). doi:10.1088/0965-0393/24/7/075005
  • Tewari A, Gokhale AM, Spowart JE, et al. Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions. Acta Mater. 2004;52(2):307–319. doi:10.1016/j.actamat.2003.09.016
  • Bostanabad R, Bui A, Xie W, et al. Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater. 2016;103:89–102. doi:10.1016/j.actamat.2015.09.044
  • Jung J, Yoon JI, Park HK, et al. Microstructure design using machine learning generated low dimensional and continuous design space. Materialia. 2020;11:100690. doi:10.1016/j.mtla.2020.100690
  • Hsu T, Epting WK, Kim H, et al. Microstructure generation via generative adversarial network for heterogeneous, topologically complex 3D materials. JOM. 2021;73:90–102. doi:10.1007/s11837-020-04484-y
  • Unocic RR, Zhou N, Kovarik L, et al. Dislocation decorrelation and relationship to deformation microtwins during creep of a γ′precipitate strengthened Ni-based superalloy. Acta Mater. 2011;59:7325–7339. doi:10.1016/j.actamat.2011.07.069
  • Pollock TM, Argon A. Creep resistance of CMSX-3 Nickel-base superalloy single crystals. Acta Mat. 1992;40:1–30. doi:10.1016/0956-7151(92)90195-K
  • Nouailhas D, Cailletaud G. Multiaxial behaviour of Ni-base single crystals. Scrip Mater. 1996;34:565–571. doi:10.1016/1359-6462(95)00547-1
  • Busso E, Meissonier F, ODowd N. Gradient-dependent deformation of two-phase single crystals. Jour Mech Phys Sol. 2000;48:2333–2361. doi:10.1016/S0022-5096(00)00006-5
  • Fromm BS, Chang K, McDowell DL, et al. Linking phase-field and finite-element modeling for process-structure-property relations of a Ni-base superalloy. Acta Mater. 2012;60:5984–5999. doi:10.1016/j.actamat.2012.06.058
  • Parthasarathy TA, Rao SI, Dimiduk DM. A fast spreadsheet model for the yield strength of superalloys. Superalloys. 2004;2004:887–896. doi:10.7449/2004/Superalloys_2004_887_896
  • Keshavarz S, Ghosh S. Hierarchical crystal plasticity FE model for nickel-based superalloys: Sub-grain microstructures to polycrystalline aggregates. Int Jour Sol Struc. 2015;55:17–31. doi:10.1016/j.ijsolstr.2014.03.037
  • Lenthe W. Twin related domains in polycrystalline nickel-base superalloys: 3D structure and fatigue [PhD thesis, University of California- Santa Barbara; 2017
  • Echlin MP, Mottura A, Wang M, et al. Three-dimensional characterization of the permeability of W-Cu composites using a new “TriBeam” technique. Acta Mater. 2014b;64:307–315. doi:10.1016/j.actamat.2013.10.043
  • Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recognit. 1993;26(4):617–625. doi:10.1016/0031-3203(93)90115-D
  • Meyer F. Topographic distance and watershed lines. Sign Proc. 1994;38(1):113–125. doi:10.1016/0165-1684(94)90060-4
  • Goldberg DE. Genetic algorithms in search, optimization, and machine learning. MA: Addison- Wesley, Reading; 1989.
  • Massey FJ. The Kolmogorov-Smirnov test for goodness of Fit. J Amer Stat Assoc. 1951;46(253):68–78. doi:10.1080/01621459.1951.10500769
  • Ghosh S. Micromechanical analysis and multi-scale modeling using the voronoi cell finite element method. Boca Raton: CRC Press/Taylor & Francis; 2011.
  • Keshavarz S, Ghosh S. Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 2013;61:6549–6561. doi:10.1016/j.actamat.2013.07.038
  • Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials. Amsterdam: North-Holland; 1993.
  • Kovacˇ M, Simonov I, Cizelj L. The effect of grain structure on the elastic-plastic response of a polycrystalline aggregate. Jol Mech. Engr. 2002;48:580–590.
  • Zohdi TI, Wriggers P. An introduction to computational micromechanics. Berlin, Heidelberg: Springer; 2004.
  • Weber G, Pinz M, Ghosh S. Machine learning-aided parametrically-homogenized crystal plasticity model (PHCPM) for single crystal Ni-based superalloys. JOM. 2020;72(12):4404–4419. doi:10.1007/s11837-020-04344-9
  • Leveranikt GR, McClung RC, Wu Y-T, et al. Turbine rotor material design. US Dept of Transportation, Federal Aviation Administration report DOT/FAA/AR-00/64 2000.
  • FAA. Damage tolerance for high energy turbine engine components. FAA Advis Circ AC. 2001;33:14–11. https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_33_14-1.pdf.
  • Leverant GR, McClung RC, Millwater HR, et al. A new tool for design and certification of aircraft turbine rotors. Proceedings of ASME TURBO EXPO 2002 Jun 3–6 2002; Amsterdam, The Netherlands, GT-2002-30303.
  • Enright MP, McClung RC, Chan KS, et al. Micromechanics-based fracture risk assessment using integrated probabilistic damage tolerance analysis and manufacturing process models. Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT; 2016, Jun 13–17, Seoul, South Korea, GT2016-58089.
  • McClung RC, Enright MP, Liang W, et al. Integration of manufacturing process simulation with probabilistic damage tolerance analysis of aircraft engine components. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; 2012 Apr 23 - 26; Honolulu, Hawaii, AIAA 2012-1528.
  • Millwater HP, Fitch SHK, Wu Y-T, et al. A probabilistically based damage tolerance analysis computer program for hard alpha anomalies in titanium rotors. IGTI 2000, ASME TURBO EXPO 2000: LAND, SEA, AND AIR, May 8-11, 2000 – Munich Germany, 2000-GT-0421.
  • Ozturk D, Kotha S, Pilchak AL, et al. Two-way multi-scaling for predicting fatigue crack nucleation in titanium alloys using parametrically homogenized constitutive models. JMPS. 2019;128:181–207.
  • Venkatesh V, Noraas R, Pilchak RA, et al. Data driven tools and methods for microtexture classification and dwell fatigue life prediction in dual phase titanium alloys. The 14th world conference on titanium, MATEC Web of conferences 321; 2020. 11091. doi:10.1051/matecconf/202032111091
  • Xu Y, Joseph S, Karamched P, et al. Predicting dwell fatigue life in titanium alloys using modelling and experiment. Nature Comm. 2020;11(5868 (2020)). doi:10.1038/s41467-020-19470-w.
  • Liu Y, Dunne FPE. The mechanistic link between macrozones and dwell fatigue in titanium alloys. Int J Fatigue. 2021;142:105971. doi:10.1016/j.ijfatigue.2020.105971
  • Shen J, Venkatesh V, Noraas R, et al. Parametrically upscaled crack nucleation model (PUCNM) for fatigue nucleation in titanium alloys containing micro-texture regions (MTR). 2023. (in review).
  • Ozturk D, Pilchak AL, Ghosh S. Experimentally validated dwell and cyclic fatigue crack nucleation model for (-titanium alloys. Scripta Mater. 2017;127:15–18. doi:10.1016/j.scriptamat.2016.08.031
  • Allison J, Li M, Wolverton C, et al. Virtual aluminum castings: An industrial application of ICME. JOM. 2006b;58:28–35. doi:10.1007/s11837-006-0224-4
  • Semiatin SL, Furrer DU. Modeling of microstructure evolution during THE THERMOMECHANICAL PROCESSING of titanium alloys, fundamentals of modeling for metals processing, ASM-International Metals Handbook Volume 22A, ASM-International, 2009, pp. 522-533.
  • Furrer D, Chatterjee A, Shen G, et al. Development and application of microstructure and mechanical property models for titanium alloys. In: Minomi M., Akiyama, S., Ikeda M., etal, editors. Ti-2007 Science and Technology. Sendai, Japan: The Japan Institute of Metals; 2007. pp. 781–788.
  • Furrer D, Goetz R, Shen G. Modeling and simulation of alloy 718 microstructure and mechanical properties, Proceedings of the 7th International Symposium on Superalloy 718 & Derivatives, 2010 Oct 10–13, 2010. Pittsburgh, Pennsylvania: TMS.
  • Shen G. Microstructure modeling of forged components of ingot metallurgy nickel base superalloys, In: Chang, K.-M., Srivastava, S. K., Furrer, K. R., etal, editors. Advanced technologies for superalloy affordability; The minerals, metals and materials society; 2000, p 223–231.
  • Furrer D, Groppi G, and Bunge G. Current and future trends in the manufacture of turbine engine disks; 2004 ASM materials solutions conference. 2004 Oct. 18-21; Columbus, OH.
  • Burlatsky SF, Furrer DU, Venkatesh V, et al. Probabilistic model, system, and application for component design optimization, to be published 2022.
  • Donegan S, Groeber M. Data structures and work- flows for ICME. In: Ghosh, S., Woodward, C., Przybyla, C. editors. Integrated computational materials engineering (ICME). Cham: Springer; 2020. doi:10.1007/978-3-030-40562-5_2
  • Kaufman L, Rousseeuw PJ. Clustering by means of medoids. In: Dodge Y., editor. Statistical data analysis based on the L_1 norm and related methods ; North-Holland; 1987 p. 405–416.
  • Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Jol. Comput. Appl. Mathem. 1987;20:53–65. doi:10.1016/0377-0427(87)90125-7
  • Spowart JE, Mayurama B, Miracle DB. Multiscale characterization of spatially heterogeneous systems: implications for discontinuously reinforced metal-matrix composite microstructures. Mater Sci Eng A. 2001;307:51–66. doi:10.1016/S0921-5093(00)01962-6
  • Valiveti DM, Ghosh S. Morphology based domain partitioning of multi-phase materials: A preprocessor for multi-scale modelling. Int Jol. Numer. Meth. Engr. 2007;69:1717–1754. doi:10.1002/nme.1834
  • Pilchak A. Fatigue crack growth rates in alpha titanium: faceted vs. striation growth. Scrip Mater. 2013;68(5):277–280. doi:10.1016/j.scriptamat.2012.10.041
  • Chisholm SA, Castro JF, Chapman BD, et al. Smarter testing through simulation for efficient design and attainment of regulatory compliance. 30th ICAF Symposium – Kraków, 5–7 June 2019.
  • Cheng J, Hu X, Lancaster D, et al. Modeling deformation and failure in AlSi-polyester abradable sealcoating material using microstructure-based finite element simulation. Available from SSRN: https://ssrn.com/abstract = 4046348 or 2022 Posted: 1 Mar 2022.
  • Alam A, Eastman D, Jo M, et al. Development of a high-temperature tensile tester for micromechanical characterization of materials supporting meso-scale ICME models. JOM. 2016;11(68):2754–2760. doi:10.1007/s11837-016-2100-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.