2,179
Views
0
CrossRef citations to date
0
Altmetric
Full Critical Review

Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites

, , , , , & show all
Pages 1192-1244 | Received 29 Jul 2022, Accepted 08 Sep 2023, Published online: 25 Sep 2023

References

  • Lu K. The future of metals. Science. 2010;328:319–320. doi:10.1126/science.1185866
  • Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature. 2019;575:64–74. doi:10.1038/s41586-019-1702-5
  • Chen R, Li B, Li Y, et al. Influences of particle fraction and characteristics on damage tolerance of TiB2-reinforced steel matrix composites. Mater Sci Eng A. 2021;823:141736. doi:10.1016/j.msea.2021.141736
  • Weigelt C, Schmidt G, Aneziris CG, et al. Compressive and tensile deformation behaviour of TRIP steel-matrix composite materials with reinforcing additions of zirconia and/or aluminium titanate. J Alloys Compd. 2017;695:9–20. doi:10.1016/j.jallcom.2016.10.176
  • Hlushko K, Keckes J, Ressel G, et al. Dark-field X-ray microscopy reveals mosaicity and strain gradients across sub-surface TiC and TiN particles in steel matrix composites. Scr Mater. 2020;187:402–406. doi:10.1016/j.scriptamat.2020.06.053
  • Tu XX, Xiao LR, Cai ZY, et al. Effects of vibration aging on residual stress and performance of instrument-grade TiC reinforced steel matrix composite. Mater Lett. 2022;325:132829. doi:10.1016/j.matlet.2022.132829
  • Tu X, Xiao L, Zhao X, et al. Microstructure and nanoindentation creep behavior of TiC reinforced steel matrix composite after stabilizing heat treatments. Ceram Int. 2022;48:24733–24744. doi:10.1016/j.ceramint.2022.05.122
  • Aparicio-Fernández R, Springer H, Szczepaniak A, et al. In-situ metal matrix composite steels: effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels. Acta Mater. 2016;107:38–48. doi:10.1016/j.actamat.2016.01.048
  • Yang Y, Wang H, Liang Y, et al. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni–Ti–B4C and Ni–Ti–B4C–C systems during casting. Mater Sci Eng A. 2007;445–446:398–404. doi:10.1016/j.msea.2006.09.062
  • Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Reports. 2013;74:281–350. doi:10.1016/j.mser.2013.08.001
  • Radhamani AV, Lau HC, Ramakrishna S. CNT-reinforced metal and steel nanocomposites: A comprehensive assessment of progress and future directions. Compos Part A. 2018;114:170–187. doi:10.1016/j.compositesa.2018.08.010
  • Wang BG, Wang GD, Misra RDK, et al. Increased hot-formability and grain-refinement by dynamic recrystallization of ferrite in an in situ TiB2 reinforced steel matrix composite. Mater Sci Eng A. 2021;812:141100. doi:10.1016/j.msea.2021.141100
  • Qiu F, Zhang H, Li C-L, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Mater Sci Eng A. 2021;819:141485. doi:10.1016/j.msea.2021.141485
  • Chawla KK. Metal matrix composites: science and engineering. Cham: Springer International Publishing; 2019. p. 199–249. doi:10.1007/978-3-030-28983-6_6
  • Moya JS, Lopez-Esteban S, Pecharromán C. The challenge of ceramic/metal microcomposites and nanocomposites. Prog Mater Sci. 2007;52:1017–1090. doi:10.1016/j.pmatsci.2006.09.003
  • Guan D, He X, Zhang R, et al. Microstructure and tensile properties of in situ polymer-derived particles reinforced steel matrix composites produced by powder metallurgy method. Mater Sci Eng A. 2017;705:231–238. doi:10.1016/j.msea.2017.07.084
  • Chen H, Gu D, Deng L, et al. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure. J Mater Sci Technol. 2021;89:242–252. doi:10.1016/j.jmst.2020.04.011
  • Campbell J. Complete casting handbook: metal casting processes, metallurgy, techniques and design. Oxford: Butterworth-Heinemann; 2015.
  • Pauly S, Wang P, Kühn U, et al. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit Manuf. 2018;22:753–757. doi:10.1016/j.addma.2018.05.034
  • Özer G, Kisasöz A. The role of heat treatments on wear behaviour of 316L stainless steel produced by additive manufacturing. Mater Lett. 2022;327:133014. doi:10.1016/j.matlet.2022.133014.
  • Riquelme A, Sánchez de Rojas Candela C, Rodrigo P, et al. Influence of process parameters in additive manufacturing of highly reinforced 316L/SiCp composites. J Mater Process Technol. 2022;299:117325. doi:10.1016/j.jmatprotec.2021.117325.
  • Özer G, Karaaslan A. A study on the effects of different heat-treatment parameters on microstructure–mechanical properties and corrosion behavior of maraging steel produced by direct metal laser sintering. Steel Res Int. 2020;91:1–8. doi:10.1002/srin.202000195
  • Guo L, Zhang L, Andersson J, et al. Additive manufacturing of 18% nickel maraging steels: defect, structure and mechanical properties: a review. J Mater Sci Technol. 2022;120:227–252. doi:10.1016/j.jmst.2021.10.056
  • Hou H, Simsek E, Stasak D, et al. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat. J Phys D Appl Phys. 2017;50:404001. doi:10.1088/1361-6463/aa85bf.
  • Dadbakhsh S, Speirs M, Van Humbeeck J, et al. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. MRS Bull. 2016;41:765–774. doi:10.1557/mrs.2016.209
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23:1917–1928. doi:10.1007/s11665-014-0958-z
  • Van Humbeeck J. Additive manufacturing of shape memory alloys. Shape Mem Superelasticity. 2018;4:309–312. doi:10.1007/s40830-018-0174-z
  • Babacan N, Pauly S, Gustmann T. Laser powder bed fusion of a superelastic Cu-Al-Mn shape memory alloy. Mater Des. 2021;203:109625. doi:10.1016/j.matdes.2021.109625
  • Ferretto I, Kim D, Della Ventura NM, et al. Laser powder bed fusion of a Fe–Mn–Si shape memory alloy. Addit Manuf. 2021;46:102071. doi:10.1016/j.addma.2021.102071
  • Hou H, Simsek E, Ma T, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science. 2019;366:1116–1121. doi:10.1126/science.aax7616
  • Haberland C, Elahinia M, Walker JM, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct. 2014;23:104002. doi:10.1088/0964-1726/23/10/104002.
  • Tang S, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—a review. Adv Eng Mater. 2021;23:2100053. doi:10.1002/adem.202100053
  • Wang Z, Ummethala R, Singh N, et al. Selective laser melting of aluminum and its alloys. Materials (Basel). 2020;13:4564. doi:10.3390/ma13204564
  • Yu WH, Sing SL, Chua CK, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog Mater Sci. 2019;104:330–379. doi:10.1016/j.pmatsci.2019.04.006
  • Boes J, Röttger A, Becker L, et al. Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion – microstructure and properties. Addit Manuf. 2019;30:100836. doi:10.1016/j.addma.2019.100836
  • Ogawa F, Masuda C. Fabrication and the mechanical and physical properties of nanocarbon-reinforced light metal matrix composites: a review and future directions. Mater Sci Eng A. 2021;820:141542. doi:10.1016/j.msea.2021.141542
  • Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: microstructural, interfacial, and mechanical properties. J Mater Process Technol. 2020;281:116618. doi:10.1016/j.jmatprotec.2020.116618
  • Wang M, Song B, Wei Q, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting. J Alloys Compd. 2019;810:151926. doi:10.1016/j.jallcom.2019.151926
  • Xi L, Guo S, Gu D, et al. Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites. J Alloys Compd. 2020;819:152980. doi:10.1016/j.jallcom.2019.152980
  • Zhang D, Yi D, Wu X, et al. Sic reinforced AlSi10Mg composites fabricated by selective laser melting. J Alloys Compd. 2022;894:162365. doi:10.1016/j.jallcom.2021.162365
  • Xi L, Gu D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic. J Mater Res Technol. 2020;9:2611–2622. doi:10.1016/j.jmrt.2020.04.059
  • Zhao X, Gu D, Ma C, et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites. Vacuum. 2019;160:189–196. doi:10.1016/j.vacuum.2018.11.022
  • Xie H, Zhang J, Li F, et al. Selective laser melting of SiCp/Al composites: densification, microstructure, and mechanical and tribological properties. Ceram Int. 2021;47:30826–30837. doi:10.1016/j.ceramint.2021.07.263
  • Chang F, Gu D, Dai D, et al. Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size. Surf Coatings Technol. 2015;272:15–24. doi:10.1016/j.surfcoat.2015.04.029
  • Yan Q, Chen B, Li JS. Super-high-strength graphene/titanium composites fabricated by selective laser melting. Carbon. 2021;174:451–462. doi:10.1016/j.carbon.2020.12.047
  • Zhao Y, Wu C, Zhou S, et al. Selective laser melting of Ti-TiN composites: formation mechanism and corrosion behaviour in H2SO4/HCl mixed solution. J Alloys Compd. 2021;863:158721. doi:10.1016/j.jallcom.2021.158721
  • Zhou Z, Liu Y, Liu X, et al. Microstructure evolution and mechanical properties of in-situ Ti6Al4V–TiB composites manufactured by selective laser melting. Compos Part B. 2021;207:108567. doi:10.1016/j.compositesb.2020.108567
  • Xi L, Ding K, Gu D, et al. Interfacial structure and wear properties of selective laser melted Ti/(TiC + TiN) composites with high content of reinforcements. J Alloys Compd. 2021;870:159436. doi:10.1016/j.jallcom.2021.159436
  • Gu D, Chen H, Dai D, et al. Carbon nanotubes enabled laser 3D printing of high-performance titanium with highly concentrated reinforcement. IScience. 2020;23:101498. doi:10.1016/j.isci.2020.101498
  • Gu D, Hagedorn YC, Meiners W, et al. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coatings Technol. 2011;205:3285–3292. doi:10.1016/j.surfcoat.2010.11.051
  • Gu D, Hagedorn YC, Meiners W, et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior. Compos Sci Technol. 2011;71:1612–1620. doi:10.1016/j.compscitech.2011.07.010
  • Niessen F, Gazder AA, Hald J, et al. Multiscale in-situ studies of strain-induced martensite formation in inter-critically annealed extra-low-carbon martensitic stainless steel. Acta Mater. 2021;220:117339. doi:10.1016/j.actamat.2021.117339
  • Chen H, Gu D, Kosiba K, et al. Achieving high strength and high ductility in WC-reinforced iron-based composites by laser additive manufacturing. Addit Manuf. 2020;35:101195. doi:10.1016/j.addma.2020.101195
  • Li R, Liu J, Shi Y, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol. 2012;59:1025–1035. doi:10.1007/s00170-011-3566-1
  • yu Chen H, dong Gu D, Ge Q, et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing. Int J Miner Metall Mater. 2021;28:462–474. doi:10.1007/s12613-020-2133-x
  • Chen H, Gu D. Effect of metallurgical defect and phase transition on geometric accuracy and wear resistance of iron-based parts fabricated by selective laser melting. J Mater Res. 2016;31:1477–1490. doi:10.1557/jmr.2016.132
  • Boegelein T, Dryepondt SN, Pandey A, et al. Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting. Acta Mater. 2015;87:201–215. doi:10.1016/j.actamat.2014.12.047
  • Garibaldi M, Ashcroft I, Simonelli M, et al. Metallurgy of high-silicon steel parts produced using selective laser melting. Acta Mater. 2016;110:207–216. doi:10.1016/j.actamat.2016.03.037
  • Qiu C, Adkins NJE, Attallah MM. Selective laser melting of invar 36: microstructure and properties. Acta Mater. 2016;103:382–395. doi:10.1016/j.actamat.2015.10.020
  • Fang Y, Kim MK, Zhang Y, et al. Particulate-reinforced iron-based metal matrix composites fabricated by selective laser melting: a systematic review. J Manuf Process. 2022;74:592–639. doi:10.1016/j.jmapro.2021.12.018
  • Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des. 2018;144:98–128. doi:10.1016/j.matdes.2018.02.018
  • Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: a review of their microstructure and properties. Mater Sci Eng A. 2020;772:138633. doi:10.1016/j.msea.2019.138633.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Mandal S, Sadeghianjahromi A, Wang CC. Experimental and numerical investigations on molten metal atomization techniques – a critical review. Adv Powder Technol. 2022;33:103809. doi:10.1016/j.apt.2022.103809
  • Jang T-S, Kim D, Han G, et al. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomed Eng Lett. 2020;10:505–516. doi:10.1007/s13534-020-00177-2
  • Averardi A, Cola C, Zeltmann SE, et al. Effect of particle size distribution on the packing of powder beds: a critical discussion relevant to additive manufacturing. Mater Today Commun. 2020;24:100964. doi:10.1016/j.mtcomm.2020.100964
  • Yang M, Dai Y, Song C, et al. Microstructure evolution of grey cast iron powder by high pressure gas atomization. J Mater Process Technol. 2010;210:351–355. doi:10.1016/j.jmatprotec.2009.09.023
  • Li R, Shi Y, Wang Z, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl Surf Sci. 2010;256:4350–4356. doi:10.1016/j.apsusc.2010.02.030
  • Snow Z, Nassar AR, Reutzel EW. Invited review article: review of the formation and impact of flaws in powder bed fusion additive manufacturing. Addit Manuf. 2020;36:101457. doi:10.1016/j.addma.2020.101457
  • Rabin BH, Smolik GR, Korth GE. Characterization of entrapped gases in rapidly solidified powders. Mater Sci Eng A. 1990;124:1–7. doi:10.1016/0921-5093(90)90328-Z
  • Zhang LC, Xu WY, Li Z, et al. Mechanism of rapidly solidified satellites formation in gas atomized powders: simulation and characterization. Powder Technol. 2023;418:118162. doi:10.1016/j.powtec.2022.118162
  • Xiong L, Chuang AC, Thomas J, et al. Defect and satellite characteristics of additive manufacturing metal powders. Adv Powder Technol. 2022;33:103486. doi:10.1016/j.apt.2022.103486
  • Gu D, Yuan P. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: underlying role of reinforcement weight fraction. J Appl Phys. 2015;118:233109. doi:10.1063/1.4937905
  • Vasantgadkar NA, Bhandarkar UV, Joshi SS. A finite element model to predict the ablation depth in pulsed laser ablation. Thin Solid Films. 2010;519:1421–1430. doi:10.1016/j.tsf.2010.09.016
  • Samant AN, Du B, Dahotre NB. In-situ surface absorptivity prediction during 1.06 μm wavelength laser low aspect ratio machining of structural ceramics. Phys Status Solidi. 2009;206:1433–1439. doi:10.1002/pssa.200925108
  • Chen H, Gu D, Dai D, et al. Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Mater Sci Eng A. 2017;682:279–289. doi:10.1016/j.msea.2016.11.047
  • AlMangour B, Grzesiak D, Cheng J, et al. Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: experimental and simulation methods. J Mater Process Technol. 2018;257:288–301. doi:10.1016/j.jmatprotec.2018.01.028
  • Kim KJ, Kim Y-W, Lim K-Y, et al. Electrical and thermal properties of SiC–AlN ceramics without sintering additives. J Eur Ceram Soc. 2015;35:2715–2721. doi:10.1016/j.jeurceramsoc.2015.04.010
  • Prass GS, d’Oliveira ASCM. Processing and characterization of AISI 316L coatings modified with Cu and CuO nanoparticles. Surf Coatings Technol. 2023;461:129465. doi:10.1016/j.surfcoat.2023.129465
  • Wei C, Chueh Y-H, Zhang X, et al. Easy-to-remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion. J Manuf Sci Eng. 2019;141:071002. doi:10.1115/1.4043536.
  • Kim J, Kang S. Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations. J Alloys Compd. 2012;528:20–27. doi:10.1016/j.jallcom.2012.02.124
  • Taya M, Hayashi S, Kobayashi AS, et al. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc. 1990;73:1382–1391. doi:10.1111/j.1151-2916.1990.tb05209.x
  • Rong Y, Huang Y, Xu J, et al. Numerical simulation and experiment analysis of angular distortion and residual stress in hybrid laser-magnetic welding. J Mater Process Technol. 2017;245:270–277. doi:10.1016/j.jmatprotec.2017.02.031
  • Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng A. 2012;531:112–118. doi:10.1016/j.msea.2011.10.043
  • Song B, Dong S, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J Alloys Compd. 2013;579:415–421. doi:10.1016/j.jallcom.2013.06.087
  • Wei Q, Li S, Han C, et al. Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties. J Mater Process Technol. 2015;222:444–453. doi:10.1016/j.jmatprotec.2015.02.010
  • Yan X, Huang C, Chen C, et al. Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting. Surf Coatings Technol. 2019;371:161–171. doi:10.1016/j.surfcoat.2018.03.072
  • AlMangour B, Grzesiak D, Yang J-M. Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content. Mater Des. 2016;104:141–151. doi:10.1016/j.matdes.2016.05.018
  • AlMangour B, Grzesiak D, Yang JM. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater Des. 2016;96:150–161. doi:10.1016/j.matdes.2016.02.022
  • AlMangour B, Grzesiak D, Yang JM. Selective laser melting of TiB2/316L stainless steel composites: the roles of powder preparation and hot isostatic pressing post-treatment. Powder Technol. 2017;309:37–48. doi:10.1016/j.powtec.2016.12.073
  • AlMangour B, Grzesiak D, Yang JM. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment. J Mater Process Technol. 2017;244:344–353. doi:10.1016/j.jmatprotec.2017.01.019
  • Li B, Qian B, Xu Y, et al. Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: formation mechanism and strengthening effect. Mater Sci Eng A. 2019;745:495–508. doi:10.1016/j.msea.2019.01.008
  • Zhao X, Wei QS, Gao N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing. J Mater Process Technol. 2019;270:8–19. doi:10.1016/j.jmatprotec.2019.01.028
  • Zheng Z, Wang L, Jia M, et al. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting. Mater Sci Eng C. 2017;71:1099–1105. doi:10.1016/j.msec.2016.11.032
  • Salman O, Funk A, Waske A, et al. Additive manufacturing of a 316L steel matrix composite reinforced with CeO2 particles: process optimization by adjusting the laser scanning speed. Technologies. 2018;6:25. doi:10.3390/technologies6010025
  • Song B, Wang Z, Yan Q, et al. Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites. Mater Sci Eng A. 2017;707:478–487. doi:10.1016/j.msea.2017.09.092
  • AlMangour B, Grzesiak D, Yang JM. In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: feedstock powder preparation for selective laser melting at various energy densities. Powder Technol. 2018;326:467–478. doi:10.1016/j.powtec.2017.11.064
  • Lin D, Richard Liu C, Cheng GJ. Laser sintering of separated and uniformly distributed multiwall carbon nanotubes integrated iron nanocomposites. J Appl Phys. 2014;115. doi:10.1063/1.4869214
  • Ouyang W, Xu Z, Jia S, et al. Multilayer-graphene reinforced 316L matrix composites preparation by laser deposited additive manufacturing: microstructure and mechanical property analysis. Mater Res Express. 2019;6:096557. doi:10.1088/2053-1591/ab2f2e.
  • Lin D, Richard Liu C, Cheng GJ. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: microstructure and mechanical property enhancement. Acta Mater. 2014;80:183–193. doi:10.1016/j.actamat.2014.07.038
  • Doñate-Buendía C, Frömel F, Wilms MB, et al. Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Mater Des. 2018;154:360–369. doi:10.1016/j.matdes.2018.05.044
  • Kang N, Ma W, Li F, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite. Vacuum. 2018;154:69–74. doi:10.1016/j.vacuum.2018.04.044
  • Behera MP, Dougherty T, Singamneni S. Selective laser melting of stainless steel and silicon nitride fibre metal matrix composites. Proc Inst Mech Eng Part B J Eng Manuf. 2020;234:1513–1525. doi:10.1177/0954405420928684
  • Li X, Willy HJ, Chang S, et al. Selective laser melting of stainless steel and alumina composite: experimental and simulation studies on processing parameters, microstructure and mechanical properties. Mater Des. 2018;145:1–10. doi:10.1016/j.matdes.2018.02.050
  • Zhai W, Zhou W, Nai SML, et al. Characterization of nanoparticle mixed 316 L powder for additive manufacturing. J Mater Sci Technol. 2020;47:162–168. doi:10.1016/j.jmst.2020.02.019
  • Suryanarayana C. Mechanical alloying: a critical review. Mater Res Lett. 2022;10:619–647. doi:10.1080/21663831.2022.2075243
  • Zhai W, Zhu Z, Zhou W, et al. Selective laser melting of dispersed TiC particles strengthened 316L stainless steel. Compos Part B. 2020;199:108291. doi:10.1016/j.compositesb.2020.108291
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi:10.1016/S0079-6425(99)00010-9
  • Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog Mater Sci. 2013;58:383–502. doi:10.1016/j.pmatsci.2012.10.001
  • Zhang M, Li C, Gao Q, et al. The effect of heat treatment on microstructure and properties of laser-deposited TiC reinforced H13 steel matrix composites. Optik. 2020;206:164286. doi:10.1016/j.ijleo.2020.164286
  • Han Q, Setchi R, Evans SL. Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol. 2016;297:183–192. doi:10.1016/j.powtec.2016.04.015
  • AlMangour B, Kim YK, Grzesiak D, et al. Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing. Compos Part B. 2019;156:51–63. doi:10.1016/j.compositesb.2018.07.050
  • Zou Y, Tan C, Qiu Z, et al. Additively manufactured SiC-reinforced stainless steel with excellent strength and wear resistance. Addit Manuf. 2021;41:101971. doi:10.1016/j.addma.2021.101971
  • Liu Y, Tang M, Hu Q, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/AISI420 stainless steel composites fabricated by selective laser melting. Mater Des. 2020;187:1–13. doi:10.1016/j.matdes.2019.108381
  • Ertugrul O, Enrici TM, Paydas H, et al. Laser cladding of TiC reinforced 316L stainless steel composites: feedstock powder preparation and microstructural evaluation. Powder Technol. 2020;375:384–396. doi:10.1016/j.powtec.2020.07.100
  • Matin MA, Lu L, Gupta M. Investigation of the reactions between boron and titanium compounds with magnesium. Scr Mater. 2001;45:479–486. doi:10.1016/S1359-6462(01)01059-4
  • Wang X, Jha A, Brydson R. In situ fabrication of Al3Ti particle reinforced aluminium alloy metal–matrix composites. Mater Sci Eng A. 2004;364:339–345. doi:10.1016/j.msea.2003.08.049
  • Tjong SC. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater. 2007;9:639–652. doi:10.1002/adem.200700106
  • Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater. 2012;2012:983470. doi:10.1155/2012/983470.
  • Wang HY, Jiang QC, Li XL, et al. In situ synthesis of TiC/Mg composites in molten magnesium. Scr Mater. 2003;48:1349–1354. doi:10.1016/S1359-6462(03)00014-9
  • Krasnowski M, Kulik T. Nanocrystalline FeAl–TiN composites obtained by hot-pressing consolidation of reactively milled powders. Scr Mater. 2007;57:553–556. doi:10.1016/j.scriptamat.2007.04.031
  • Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Reports. 2000;29:49–113. doi:10.1016/S0927-796X(00)00024-3
  • AlMangour B, Grzesiak D, Yang JM. In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. J Alloys Compd. 2017;706:409–418. doi:10.1016/j.jallcom.2017.01.149
  • Dadbakhsh S, Hao L. Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloys Compd. 2012;541:328–334. doi:10.1016/j.jallcom.2012.06.097
  • Hwang JY, Neira A, Scharf TW, et al. Laser-deposited carbon nanotube reinforced nickel matrix composites. Scr Mater. 2008;59:487–490. doi:10.1016/j.scriptamat.2008.04.032
  • Yasin G, Khan MA, Arif M, et al. Synthesis of spheres-like Ni/graphene nanocomposite as an efficient anti-corrosive coating; effect of graphene content on its morphology and mechanical properties. J Alloys Compd. 2018;755:79–88. doi:10.1016/j.jallcom.2018.04.321
  • Jin B, Xiong D-B, Tan Z, et al. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes. Carbon. 2019;142:482–490. doi:10.1016/j.carbon.2018.10.088
  • Nieto A, Bisht A, Lahiri D, et al. Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev. 2017;62:241–302. doi:10.1080/09506608.2016.1219481
  • Huang X, Yin Z, Wu S, et al. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7:1876–1902. doi:10.1002/smll.201002009
  • Chu L, Shi J, de Cursi ES. Vibration analysis of vacancy defected graphene sheets by Monte Carlo based finite element method. Nanomaterials. 2018;8:489. doi:10.3390/nano8070489.
  • Lin D, Ye C, Liao Y, et al. Mechanism of fatigue performance enhancement in a laser sintered superhard nanoparticles reinforced nanocomposite followed by laser shock peening. J Appl Phys. 2013;113:133509. doi:10.1063/1.4799154
  • Lin D, Suslov S, Ye C, et al. Laser assisted embedding of nanoparticles into metallic materials. Appl Surf Sci. 2012;258:2289–2296. doi:10.1016/j.apsusc.2011.09.132
  • Fischer P, Romano V, Weber HP, et al. Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater. 2003;51:1651–1662. doi:10.1016/S1359-6454(02)00567-0
  • Doñate-Buendia C, Kürnsteiner P, Stern F, et al. Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Mater. 2021;206:116566. doi:10.1016/j.actamat.2020.116566.
  • Zhang D, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev. 2017;117:3990–4103. doi:10.1021/acs.chemrev.6b00468
  • Schmitz T, Wiedwald U, Dubs C, et al. Ultrasmall yttrium iron garnet nanoparticles with high coercivity at low temperature synthesized by laser ablation and fragmentation of pressed powders. ChemPhysChem. 2017;18:1125–1132. doi:10.1002/cphc.201601183
  • Wagener P, Barcikowski S. Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet. Appl Phys A Mater Sci Process. 2010;101:435–439. doi:10.1007/s00339-010-5814-x
  • Tsuji T, Iryo K, Watanabe N, et al. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci. 2002;202:80–85. doi:10.1016/S0169-4332(02)00936-4
  • Kong CY, Scudamore RJ, Allen J. High-rate laser metal deposition of Inconel 718 component using low heat-input approach. Phys Procedia. 2010;5:379–386. doi:10.1016/j.phpro.2010.08.159
  • Reichardt A, Shapiro AA, Otis R, et al. Advances in additive manufacturing of metal-based functionally graded materials. Int Mater Rev. 2021;66:1–29. doi:10.1080/09506608.2019.1709354
  • Thomas M, Baxter GJ, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater. 2016;108:26–35. doi:10.1016/j.actamat.2016.02.025
  • AlMangour B, Grzesiak D, Borkar T, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting. Mater Des. 2018;138:119–128. doi:10.1016/j.matdes.2017.10.039
  • Hofmeister W, Griffith M. Solidification in direct metal deposition by LENS processing. JOM. 2001;53:30–34. doi:10.1007/s11837-001-0066-z
  • Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A. 2006;428:148–158. doi:10.1016/j.msea.2006.04.117
  • Cheng L, DeZun W, YunXu L, et al. Composition design of a new type low-alloy high-strength steel. Mater Des. 1997;18:53–59. doi:10.1016/S0261-3069(97)00029-0
  • Borm P, Klaessig FC, Landry TD, et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci. 2006;90:23–32. doi:10.1093/toxsci/kfj084
  • Chen L, Sun Y, Li L, et al. Microstructure evolution, mechanical properties, and strengthening mechanism of TiC reinforced Inconel 625 nanocomposites fabricated by selective laser melting. Mater Sci Eng A. 2020;792:139655. doi:10.1016/j.msea.2020.139655
  • Chen L, Sun Y, Li L, et al. In situ TiC/inconel 625 nanocomposites fabricated by selective laser melting: densification behavior, microstructure evolution, and wear properties. Appl Surf Sci. 2020;518:145981. doi:10.1016/j.apsusc.2020.145981
  • Chen H, Gu D, Zhang H, et al. Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: underlying role of reinforcement weight fraction. J Mater Process Technol. 2021;289:116959. doi:10.1016/j.jmatprotec.2020.116959
  • van Bohemen SMC. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol. 2012;28:487–495. doi:10.1179/1743284711Y.0000000097
  • Axén N, Zum Gahr K-H. Abrasive wear of TiC-steel composite clad layers on tool steel. Wear. 1992;157:189–201. doi:10.1016/0043-1648(92)90197-G
  • Sun Z, Xu Y, Chen F, et al. Effects of ion irradiation on microstructure of 316L stainless steel strengthened by disperse nano TiC through selective laser melting. Mater Charact. 2021;180:111420. doi:10.1016/j.matchar.2021.111420
  • Zhai W, Zhou W, Nai SML. In-situ formation of TiC nanoparticles in selective laser melting of 316L with addition of micronsized TiC particles. Mater Sci Eng A. 2022;829:142179. doi:10.1016/j.msea.2021.142179
  • Zhao S, Shen X, Yang J, et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting. Opt Laser Technol. 2018;103:239–250. doi:10.1016/j.optlastec.2018.01.005
  • Kou S. Welding metallurgy, second ed. New York: Wiley; 2003.
  • Tan C, Zou J, Wang D, et al. Duplex strengthening via SiC addition and in-situ precipitation in additively manufactured composite materials. Compos Part B. 2022;236:109820. doi:10.1016/j.compositesb.2022.109820
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Almangour B, Grzesiak D, Yang JM. Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting. J Alloys Compd. 2016;680:480–493. doi:10.1016/j.jallcom.2016.04.156
  • Niu HJ, Chang ITH. Selective laser sintering of gas atomized M2 high speed steel powder. J Mater Sci. 2000;35:31–38. doi:10.1023/A:1004720011671
  • Moyle M, Ledermueller C, Zou Z, et al. Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion. Mater Charact. 2022;184:111663. doi:10.1016/j.matchar.2021.111663
  • Kunze K, Etter T, Grässlin J, et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A. 2015;620:213–222. doi:10.1016/j.msea.2014.10.003
  • Andreau O, Koutiri I, Peyre P, et al. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. J Mater Process Technol. 2019;264:21–31. doi:10.1016/j.jmatprotec.2018.08.049
  • Kumar D, Shankar G, Prashanth KG, et al. Texture dependent strain hardening in additively manufactured stainless steel 316L. Mater Sci Eng A. 2021;820:141483. doi:10.1016/j.msea.2021.141483
  • Kim TH, Baek GY, Jeon JB, et al. Effect of laser rescanning on microstructure and mechanical properties of direct energy deposited AISI 316L stainless steel. Surf Coatings Technol. 2021;405:126540. doi:10.1016/j.surfcoat.2020.126540
  • Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:100578. doi:10.1016/j.pmatsci.2019.100578
  • Li J, Qu H, Bai J. Grain boundary engineering during the laser powder bed fusion of TiC/316L stainless steel composites: new mechanism for forming TiC-induced special grain boundaries. Acta Mater. 2022;226:117605. doi:10.1016/j.actamat.2021.117605
  • Vasilyev AA, Sokolov SF, Kolbasnikov NG, et al. Effect of alloying on the self-diffusion activation energy in γ-iron. Phys Solid State. 2011;53: 2194–2200.
  • Bokshteyn SZ. Diffusion and the structure of metals. Met Sci Heat Treat Met. 1961;3:473–480. doi:10.1007/BF00814533
  • Wang J, Li L, Tao W. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition. Opt Laser Technol. 2016;82:170–182. doi:10.1016/j.optlastec.2016.03.008
  • Zheng B, Haley JC, Yang N, et al. On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition. Mater Sci Eng A. 2019;764:138243. doi:10.1016/j.msea.2019.138243
  • Wang Y, Liu Z, Zhou Y, et al. Microstructure and mechanical properties of TiN particles strengthened 316L steel prepared by laser melting deposition process. Mater Sci Eng A. 2021;814:141220. doi:10.1016/j.msea.2021.141220
  • Kang N, Ma W, Heraud L, et al. Selective laser melting of tungsten carbide reinforced maraging steel composite. Addit Manuf. 2018;22:104–110. doi:10.1016/j.addma.2018.04.031
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17:63–70. doi:10.1038/nmat5021
  • Stefanescu DM, Dhindaw BK, Kacar SA, et al. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metall Trans A. 1988;19(11):2847–2855. doi:10.1007/BF02645819
  • Rafi HK, Karthik NV, Gong H, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform. 2013;22:3872–3883. doi:10.1007/s11665-013-0658-0
  • Chen H, Gu D, Xiong J, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting. J Mater Process Technol. 2017;250:99–108. doi:10.1016/j.jmatprotec.2017.06.044
  • Sulima I, Klimczyk P, Malczewski P. Effect of TiB2 particles on the tribological properties of stainless steel matrix composites. Acta Metall Sin. 2014;27:12–18. doi:10.1007/s40195-013-0002-6
  • Pan F, Zhang J, Chen HL, et al. Effects of rare earth metals on steel microstructures. Materials (Basel). 2016;9:1–19. doi:10.3390/ma9060417
  • Sahoo SK, Sahoo BN, Panigrahi SK. Effect of in-situ sub-micron sized TiB2 reinforcement on microstructure and mechanical properties in ZE41 magnesium matrix composites. Mater Sci Eng A. 2020;773:138883. doi:10.1016/j.msea.2019.138883
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61:315–360. doi:10.1080/09506608.2015.1116649
  • Lehmann T, Rose D, Ranjbar E, et al. Large-scale metal additive manufacturing: a holistic review of the state of the art and challenges. Int Mater Rev. 2022;67:410–459. doi:10.1080/09506608.2021.1971427
  • Gu DD, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57:133–164. doi:10.1179/1743280411Y.0000000014
  • Zhang J, Zhang Y, Li W, et al. Microstructure and properties of functionally graded materials Ti6Al4V/TiC fabricated by direct laser deposition. Rapid Prototyp J. 2018;24:677–687. doi:10.1108/RPJ-12-2016-0215
  • Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10:569–581. doi:10.1038/nmat3064
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534. doi:10.1126/science.1158877
  • Zeisig J, Schädlich N, Giebeler L, et al. Microstructure and abrasive wear behavior of a novel FeCrMoVC laser cladding alloy for high-performance tool steels. Wear. 2017;382–383:107–112. doi:10.1016/j.wear.2017.04.021
  • Ibrahim MF, Ammar HR, Samuel AM, et al. Metallurgical parameters controlling matrix/B4C particulate interaction in aluminium–boron carbide metal matrix composites. Int J Cast Met Res. 2013;26:364–373. doi:10.1179/1743133613Y.0000000074
  • Wang X, Wang CC, Jiang DM, et al. Application of a sub-regular solution model in the interface reaction in metal matrix composites. Rare Metal Mat Eng. 2015;44:830–833. doi:10.1016/S1875-5372(15)30057-6
  • Li L, Liu D, Chen Y, et al. Electron microscopy study of reaction layers between single-crystal WC particle and Ti–6Al–4 V after laser melt injection. Acta Mater. 2009;57:3606–3614. doi:10.1016/j.actamat.2009.04.021
  • Rong T, Gu D, Shi Q, et al. Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting. Surf Coatings Technol. 2016;307:418–427. doi:10.1016/j.surfcoat.2016.09.011
  • Rong T, Gu D. Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting. J Alloys Compd. 2016;680:333–342. doi:10.1016/j.jallcom.2016.04.107
  • Liu D, Li L, Li F, et al. WCp/Fe metal matrix composites produced by laser melt injection. Surf Coatings Technol. 2008;202:1771–1777. doi:10.1016/j.surfcoat.2007.07.053
  • Hu J, Zhu H, Zhang J, et al. Effects of TiC addition on microstructure, microhardness and wear resistance of 18Ni300 maraging steel by direct laser deposition. J Mater Process Technol. 2021;296:117213. doi:10.1016/j.jmatprotec.2021.117213
  • Jeong C, Kong BS, Shin JH, et al. Evaluation of thermal aging activation energies based on multi-scale mechanical property tests for an austenitic stainless steel weld beads. Mater Sci Eng A. 2022;835:142629. doi:10.1016/j.msea.2022.142629
  • Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–292. doi:10.1007/BF01912301
  • Song B, Dong S, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC. Scr Mater. 2014;75:90–93. doi:10.1016/j.scriptamat.2013.11.031
  • Chen H, Gu D, Dai D, et al. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting. Mater Lett. 2018;227:128–131. doi:10.1016/j.matlet.2018.05.042
  • Weiland A, Hultman L, Wahlström U, et al. Internal stress and microstructure of SiC reinforced aluminium alloy 2014. Acta Mater. 1998;46:5271–5281. doi:10.1016/S1359-6454(98)00212-2
  • Tan C, Zhou K, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci Technol Adv Mater. 2018;19:746–758. doi:10.1080/14686996.2018.1527645
  • Zhu HM, Zhang JW, Hu JP, et al. Effects of aging time on the microstructure and mechanical properties of laser-cladded 18Ni300 maraging steel. J Mater Sci. 2021;56:8835–8847. doi:10.1007/s10853-021-05841-1
  • Oh NR, Lee SK, Hwang KC, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC-steel composite. Scr Mater. 2016;112:123–127. doi:10.1016/j.scriptamat.2015.09.028
  • Muvvala G, Mullick S, Nath AK. Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf Coatings Technol. 2020;399:126100. doi:10.1016/j.surfcoat.2020.126100
  • Yang S, Chen N, Liu W, et al. Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding. Surf Coatings Technol. 2004;183:254–260. doi:10.1016/j.surfcoat.2003.09.062
  • Jiang WH, Kovacevic R. Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance. J Mater Process Technol. 2007;186:331–338. doi:10.1016/j.jmatprotec.2006.12.053
  • Dadoo A, Boutorabi SMA, Kheirandish S. Effect of titanium carbide concentration on the morphology of MC carbides in pulsed laser surface alloyed AISI H13 tool steel. Opt Laser Technol. 2019;112:236–244. doi:10.1016/j.optlastec.2018.11.001
  • Wu CL, Zhang S, Zhang CH, et al. Formation mechanism and phase evolution of in situ synthesizing TiC-reinforced 316L stainless steel matrix composites by laser melting deposition. Mater Lett. 2018;217:304–307. doi:10.1016/j.matlet.2018.01.097
  • Chen W, Xiao B, Xu L, et al. Additive manufacturing of martensitic stainless steel matrix composites with simultaneously enhanced strength-ductility and corrosion resistance. Compos Part B. 2022;234:109745. doi:10.1016/j.compositesb.2022.109745
  • DebRoy T, Mukherjee T, Milewski JO, et al. Scientific, technological and economic issues in metal printing and their solutions. Nat Mater. 2019;18:1026–1032. doi:10.1038/s41563-019-0408-2
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372:eabg1487. doi:10.1126/science.abg1487
  • Li Q, Lei Y, Fu H. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating. Appl Surf Sci. 2014;316:610–616. doi:10.1016/j.apsusc.2014.08.052
  • Zhao C, Zhou Y, Xing X, et al. Precipitation stability and micro-property of (Nb, Ti)C carbides in MMC coating. J Alloys Compd. 2018;763:670–678. doi:10.1016/j.jallcom.2018.05.318
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. High-strength Damascus steel by additive manufacturing. Nature. 2020;582:515–519. doi:10.1038/s41586-020-2409-3
  • Wu CL, Zhang S, Zhang CH, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition. Opt Laser Technol. 2019;115:134–139. doi:10.1016/j.optlastec.2019.02.029
  • Majumdar JD, Li L. Studies on direct laser cladding of SiC dispersed AISI 316L stainless steel. Metall Mater Trans A. 2009;40:3001. doi:10.1007/s11661-009-0018-8
  • Lo KH, Kwok CT, Cheng FT, et al. Corrosion resistance of laser-fabricated metal–matrix composite layer on stainless steel 316L. J Laser Appl. 2003;15:107–114. doi:10.2351/1.1536649
  • Wei HL, Mazumder J, DebRoy T. Evolution of solidification texture during additive manufacturing. Sci Rep. 2015;5:1–7. doi:10.1038/srep16446
  • Zhang H, Huang Y, Ning H, et al. Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering. J Nucl Mater. 2015;464:61–68. doi:10.1016/j.jnucmat.2015.04.029
  • Boegelein T, Louvis E, Dawson K, et al. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel. Mater Charact. 2016;112:30–40. doi:10.1016/j.matchar.2015.11.021
  • Zhu Q, Qu S, Wang X, et al. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding. Appl Surf Sci. 2007;253:7060–7064. doi:10.1016/j.apsusc.2007.02.055
  • Nieto A, Agarwal A, Lahiri D, et al. Carbon nanotubes reinforced metal matrix composites. Boca Raton, FL: CRC Press; 2011.
  • Palacios JJ, Pérez-Jiménez AJ, Louis E, et al. First-Principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys Rev Lett. 2003;90:106801. doi:10.1103/PhysRevLett.90.106801
  • Wang D, Song C, Yang Y, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Des. 2016;100:291–299. doi:10.1016/j.matdes.2016.03.111
  • Gu D, Chen H. Selective laser melting of high strength and toughness stainless steel parts: the roles of laser hatch style and part placement strategy. Mater Sci Eng A. 2018;725:419–427. doi:10.1016/j.msea.2018.04.046
  • Li XP, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017;129:183–193. doi:10.1016/j.actamat.2017.02.062
  • Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci. 2014;18:253–261. doi:10.1016/j.cossms.2014.06.002
  • Weertman JR. Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A. 1993;166:161–167. doi:10.1016/0921-5093(93)90319-A
  • Goh CS, Wei J, Lee LC, et al. Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater. 2007;55:5115–5121. doi:10.1016/j.actamat.2007.05.032
  • Ye Y, Ni Z, Huang C, et al. Constitutive model of elastic response for Fe-TiB2 composites. Mater Today Commun. 2022;33:104620. doi:10.1016/j.mtcomm.2022.104620
  • Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571–574. doi:10.1016/0001-6160(73)90064-3
  • Zhang Y, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting. Corros Sci. 2020;163:108241. doi:10.1016/j.corsci.2019.108241
  • Li B, Wang T, Li P, et al. Selective laser melting of 316L stainless steel: influence of Co-Cr-Mo-W addition on corrosion resistance. Metals (Basel). 2021;11:597. doi:10.3390/met11040597
  • Zhao Z, Li J, Bai P, et al. Microstructure and mechanical properties of TiC-reinforced 316L stainless steel composites fabricated using selective laser melting. Metals (Basel). 2019;9:267. doi:10.3390/met9020267
  • Schaller RF, Mishra A, Rodelas JM, et al. The role of microstructure and surface finish on the corrosion of selective laser melted 304L. J Electrochem Soc. 2018;165:C234. doi:10.1149/2.0431805jes
  • AlMangour B, Baek MS, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Mater Sci Eng A. 2018;712:812–818. doi:10.1016/j.msea.2017.11.126
  • Song C, Wang H, Sun Z, et al. Effect of multiphase microstructure on fatigue crack propagation behavior in TRIP-assisted steels. Int J Fatigue. 2020;133:105425. doi:10.1016/j.ijfatigue.2019.105425
  • Zhao X, Wei Q, Song B, et al. Fabrication and characterization of AISI 420 stainless steel using selective laser melting. Mater Manuf Process. 2015;30:1283–1289. doi:10.1080/10426914.2015.1026351
  • Holzweissig MJ, Taube A, Brenne F, et al. Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall Mater Trans B. 2015;46:545–549. doi:10.1007/s11663-014-0267-9
  • Zhai W, Zhou W, Nai SML. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting. Mater Sci Eng A. 2022;832:142460. doi:10.1016/j.msea.2021.142460
  • Dai Z, Chen H, Ding R, et al. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Mater Sci Eng R Reports. 2021;143:100590. doi:10.1016/j.mser.2020.100590
  • Wang M, Huang MX. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate. Acta Mater. 2020;188:551–559. doi:10.1016/j.actamat.2020.02.035
  • King WE, Anderson AT, Ferencz RM, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. 2015;2:041304. doi:10.1063/1.4937809
  • Chernyavsky D, Kononenko DY, Han JH, et al. Machine learning for additive manufacturing: predicting materials characteristics and their uncertainty. Mater Des. 2023;227:111699. doi:10.1016/j.matdes.2023.111699