1,181
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Contributing factors for pregnancy outcomes in women with PCOS after their first FET treatment: a retrospective cohort study

, , , , & ORCID Icon
Article: 2314607 | Received 06 Nov 2023, Accepted 30 Jan 2024, Published online: 13 Feb 2024

References

  • Macut D, Bjekić-Macut J, Rahelić D, et al. Insulin and the polycystic ovary syndrome. Diabetes Res Clin Pract. 2017;130:1–10. doi:10.1016/j.diabres.2017.06.011.
  • Azziz R. Polycystic ovary syndrome. Obstet Gynecol. 2018;132(2):321–336. doi:10.1097/AOG.0000000000002698.
  • Balen AH, Morley LC, Misso M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. 2016;22(6):687–708. doi:10.1093/humupd/dmw025.
  • Joham AE, Teede HJ, Ranasinha S, et al. Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: data from a large community-based cohort study. J Womens Health (Larchmt). 2015;24(4):299–307. doi:10.1089/jwh.2014.5000.
  • Boyle JA, Cunningham J, OˈDea K, et al. Prevalence of polycystic ovary syndrome in a sample of indigenous women in darwin, Australia. Med J Aust. 2012;196(1):62–66. doi:10.5694/mja11.10553.
  • Chen X, Yang D, Mo Y, et al. Prevalence of polycystic ovary syndrome in unselected women from Southern China. Eur J Obstet Gynecol Reprod Biol. 2008;139(1):59–64. doi:10.1016/j.ejogrb.2007.12.018.
  • Kumarapeli V, Seneviratne RdA, Wijeyaratne CN, et al. A simple screening approach for assessing community prevalence and phenotype of polycystic ovary syndrome in a semi-urban population in Sri Lanka. Am J Epidemiol. 2008;168(3):321–328. doi:10.1093/aje/kwn137.
  • March WA, Moore VM, Willson KJ, et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod (Oxford, England). 2010;25(2):544–551. doi:10.1093/humrep/dep399.
  • Moran C, Tena G, Moran S, et al. Prevalence of polycystic ovary syndrome and related disorders in mexican women. Gynecol Obstet Invest. 2010;69(4):274–280. doi:10.1159/000277640.
  • Yildiz BO, Bozdag G, Yapici Z, et al. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod. 2012;27(10):3067–3073. doi:10.1093/humrep/des232.
  • Palomba S, de Wilde MA, Falbo A, et al. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–592. doi:10.1093/humupd/dmv029.
  • Palomba S, Falbo A, Russo T, et al. Pregnancy in women with polycystic ovary syndrome: the effect of different phenotypes and features on obstetric and neonatal outcomes. Fertil Steril. 2010;94(5):1805–1811. doi:10.1016/j.fertnstert.2009.10.043.
  • Boomsma CM, Eijkemans MJ, Hughes EG, et al. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(6):673–683. doi:10.1093/humupd/dml036.
  • Kjerulff LE, Sanchez-Ramos L, Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. Am J Obstet Gynecol. 2011;204(6):558.e1-6–558.e6. doi:10.1016/j.ajog.2011.03.021.
  • Qin JZ, Pang LH, Li MJ, et al. Obstetric complications in women with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2013;11(1):56. doi:10.1186/1477-7827-11-56.
  • Santos-Ribeiro S, Mackens S, Popovic-Todorovic B, et al. The freeze-all strategy versus agonist triggering with low-dose hCG for luteal phase support in IVF/ICSI for high responders: a randomized controlled trial. Hum Reprod. 2020;35(12):2808–2818. doi:10.1093/humrep/deaa226.
  • Chen ZJ, Shi Y, Sun Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–533. doi:10.1056/NEJMoa1513873.
  • Zhu X, Ye H, Ye J, et al. Progesterone protocol versus gonadotropin-releasing hormone antagonist protocol in women with polycystic ovarian syndrome undergoing in vitro fertilization treatments with frozen-thawed embryo transfer: a prospective randomized controlled trial. Ann Transl Med. 2021;9(5):387–387. doi:10.21037/atm-20-1592.
  • Ahuja KK, Macklon N. Vitrification and the demise of fresh treatment cycles in ART. Reprod Biomed Online. 2020;41(2):217–224. doi:10.1016/j.rbmo.2020.03.017.
  • Jiang X, Liu R, Liao T, et al. A predictive model of live birth based on obesity and metabolic parameters in patients with PCOS undergoing frozen-Thawed embryo transfer. Front Endocrinol (Lausanne). 2021;12:799871. doi:10.3389/fendo.2021.799871.
  • Lin J, Huang J, Wang N, et al. Effects of pre-pregnancy body mass index on pregnancy and perinatal outcomes in women with PCOS undergoing frozen embryo transfer. BMC Pregnancy Childbirth. 2019;19(1):487. doi:10.1186/s12884-019-2611-1.
  • Arslanca T, Ecemis T, Kiseli M, et al. Pregnancy outcome of freeze thaw cycles of polycystic ovary syndrome patients regarding the anti-Müllerian hormone percentile. J Obstet Gynaecol. 2022;42(5):1319–1324. doi:10.1080/01443615.2021.1962819.
  • Hu KL, Liu FT, Xu H, et al. High antimüllerian hormone levels are associated with preterm delivery in patients with polycystic ovary syndrome. Fertil Steril. 2020;113(2):444–452.e1. doi:10.1016/j.fertnstert.2019.09.039.
  • Rotterdam EA-S,. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod (Oxford, England). 2004;19(1):41–47.
  • Gardner DK, Lane M, Stevens J, et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–1158. doi:10.1016/s0015-0282(00)00518-5.
  • Hrebícek J, Janout V, Malincíková J, et al. Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J Clin Endocrinol Metab. 2002;87(1):144–147. doi:10.1210/jcem.87.1.8292.
  • Xu B, Li Z, Zhang H, et al. Serum progesterone level effects on the outcome of in vitro fertilization in patients with different ovarian response: an analysis of more than 10,000 cycles. Fertil Steril. 2012;97(6):1321–1327. doi:10.1016/j.fertnstert.2012.03.014.
  • Liu L, Huang J, Li TC, et al. The effect of elevated progesterone levels before oocyte retrieval in women undergoing ovarian stimulation for IVF treatment on the genomic profile of peri-implantation endometrium. J Reprod Immunol. 2017;121:17–25. doi:10.1016/j.jri.2017.05.001.
  • Papanikolaou EG, Kolibianakis EM, Pozzobon C, et al. Progesterone rise on the day of human chorionic gonadotropin administration impairs pregnancy outcome in day 3 single-embryo transfer, while has no effect on day 5 single blastocyst transfer. Fertil Steril. 2009;91(3):949–952. doi:10.1016/j.fertnstert.2006.12.064.
  • Yang Y, Liu B, Wu G, et al. Exploration of the value of progesterone and progesterone/estradiol ratio on the hCG trigger day in predicting pregnancy outcomes of PCOS patients undergoing IVF/ICSI: a retrospective cohort study. Reprod Biol Endocrinol. 2021;19(1):184. doi:10.1186/s12958-021-00862-6.
  • Nikas G, Makrigiannakis A. Endometrial pinopodes and uterine receptivity. Ann N Y Acad Sci. 2003;997(1):120–123. doi:10.1196/annals.1290.042.
  • Li R, Qiao J, Wang L, et al. Serum progesterone concentration on day of HCG administration and IVF outcome. Reprod Biomed Online. 2008;16(5):627–631. doi:10.1016/s1472-6483(10)60475-0.
  • Kofinas JD, Mehr H, Ganguly N, et al. Is it the egg or the endometrium? Elevated progesterone on day of trigger is not associated with embryo ploidy nor decreased success rates in subsequent embryo transfer cycles. J Assist Reprod Genet. 2016;33(9):1169–1174. doi:10.1007/s10815-016-0752-y.
  • Lee VC, Li RH, Chai J, et al. Effect of preovulatory progesterone elevation and duration of progesterone elevation on the pregnancy rate of frozen-thawed embryo transfer in natural cycles. Fertil Steril. 2014;101(5):1288–1293. doi:10.1016/j.fertnstert.2014.01.040.
  • Kofinas JD, Blakemore J, McCulloh DH, et al. Serum progesterone levels greater than 20 ng/dl on day of embryo transfer are associated with lower live birth and higher pregnancy loss rates. J Assist Reprod Genet. 2015;32(9):1395–1399. doi:10.1007/s10815-015-0546-7.
  • Fanchin R, de Ziegler D, Castracane VD, et al. Physiopathology of premature progesterone elevation. Fertil Steril. 1995;64(4):796–801. doi:10.1016/s0015-0282(16)57857-1.
  • Melo MA, Meseguer M, Garrido N, et al. The significance of premature luteinization in an oocyte-donation programme. Hum Reprod. 2006;21(6):1503–1507. doi:10.1093/humrep/dei474.
  • Turgut EN, Ecemis S, Boynukalin KF, et al. Being on the side of old findings: progesterone elevation on the day of oocyte maturation induction does not affect embryological parameters throughout the blastocyst culture period. Arch Gynecol Obstet. 2021;303(2):581–587. doi:10.1007/s00404-020-05792-z.
  • Huang B, Ren X, Wu L, et al. Elevated progesterone levels on the day of oocyte maturation may affect top quality embryo IVF cycles. PLoS One. 2016;11(1):e0145895. doi:10.1371/journal.pone.0145895.
  • Vanni VS, Somigliana E, Reschini M, et al. Top quality blastocyst formation rates in relation to progesterone levels on the day of oocyte maturation in GnRH antagonist IVF/ICSI cycles. PLoS One. 2017;12(5):e0176482. doi:10.1371/journal.pone.0176482.
  • Racca A, Santos-Ribeiro S, De Munck N, et al. Impact of late-follicular phase elevated serum progesterone on cumulative live birth rates: is there a deleterious effect on embryo quality? Hum Reprod. 2018;33(5):860–868. doi:10.1093/humrep/dey031.
  • Urrego R, Herrera-Puerta E, Chavarria NA, et al. Follicular progesterone concentrations and messenger RNA expression of MATER and OCT-4 in immature bovine oocytes as predictors of developmental competence. Theriogenology. 2015;83(7):1179–1187. doi:10.1016/j.theriogenology.2014.12.024.
  • Fair T, Lonergan P. The role of progesterone in oocyte acquisition of developmental competence. Reprod Domest Anim. 2012;47 (s4):142–147. doi:10.1111/j.1439-0531.2012.02068.x.
  • O’Shea LC, Mehta J, Lonergan P, et al. Developmental competence in oocytes and cumulus cells: candidate genes and networks. Syst Biol Reprod Med. 2012;58(2):88–101. doi:10.3109/19396368.2012.656217.
  • Labarta E, Martínez-Conejero JA, Alamá P, et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011;26(7):1813–1825. doi:10.1093/humrep/der126.
  • Van Vaerenbergh I, Fatemi HM, Blockeel C, et al. Progesterone rise on HCG day in GnRH antagonist/rFSH stimulated cycles affects endometrial gene expression. Reprod Biomed Online. 2011;22(3):263–271. doi:10.1016/j.rbmo.2010.11.002.
  • Papanikolaou EG, Bourgain C, Kolibianakis E, et al. Steroid receptor expression in late follicular phase endometrium in GnRH antagonist IVF cycles is already altered, indicating initiation of early luteal phase transformation in the absence of secretory changes. Hum Reprod. 2005;20(6):1541–1547. doi:10.1093/humrep/deh793.
  • Shapiro BS, Daneshmand ST, Garner FC, et al. Embryo cryopreservation rescues cycles with premature luteinization. Fertil Steril. 2010;93(2):636–641. doi:10.1016/j.fertnstert.2009.01.134.
  • Simeonov M, Sapir O, Lande Y, et al. The entire range of trigger-day endometrial thickness in fresh IVF cycles is independently correlated with live birth rate. Reprod Biomed Online. 2020;41(2):239–247. doi:10.1016/j.rbmo.2020.04.008.
  • Liao Z, Liu C, Cai L, et al. The effect of endometrial thickness on pregnancy, maternal, and perinatal outcomes of women in fresh cycles after IVF/ICSI: a systematic review and Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:814648. doi:10.3389/fendo.2021.814648.
  • Rehman R, Fatima SS, Hussain M, et al. Effect of endometrial thickness on pregnancy outcome after intracytoplasmic sperm injection. J Pak Med Assoc. 2015;65(5):448–451.
  • Kasius A, Smit JG, Torrance HL, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(4):530–541. doi:10.1093/humupd/dmu011.
  • Kovacs P, Matyas S, Boda K, et al. The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod. 2003;18(11):2337–2341. doi:10.1093/humrep/deg461.
  • Mahutte N, Hartman M, Meng L, et al. Optimal endometrial thickness in fresh and frozen-thaw in vitro fertilization cycles: an analysis of live birth rates from 96,000 autologous embryo transfers. Fertil Steril. 2022;117(4):792–800. doi:10.1016/j.fertnstert.2021.12.025.
  • Shalom-Paz E, Atia N, Atzmon Y, et al. The effect of endometrial thickness and pattern on the success of frozen embryo transfer cycles and gestational age accuracy. Gynecol Endocrinol. 2021;37(5):428–432. doi:10.1080/09513590.2020.1821359.
  • Shaodi Z, Qiuyuan L, Yisha Y, et al. The effect of endometrial thickness on pregnancy outcomes of frozen-thawed embryo transfer cycles which underwent hormone replacement therapy. PLoS One. 2020;15(9):e0239120. doi:10.1371/journal.pone.0239120.
  • Pan Y, Li F, Yang CX, et al. Correlation between different endometrial preparation protocols and pregnancy outcome of frozen embryo transfer in patients with polycystic ovary syndrome: a retrospective study. Gynecol Endocrinol. 2023;39(1):2217260. doi:10.1080/09513590.2023.2217260.
  • Hu YJ, Chen YZ, Zhu YM, et al. Letrozole stimulation in endometrial preparation for cryopreserved-thawed embryo transfer in women with polycystic ovarian syndrome: a pilot study. Clin Endocrinol (Oxf). 2014;80(2):283–289. doi:10.1111/cen.12280.
  • Basir GS, O WS, So WW, et al. Evaluation of cycle-to-cycle variation of endometrial responsiveness using transvaginal sonography in women undergoing assisted reproduction. Ultrasound Obstet Gynecol. 2002;19(5):484–489. doi:10.1046/j.1469-0705.2002.00685.x.
  • Sher G, Herbert C, Maassarani G, et al. Assessment of the late proliferative phase endometrium by ultrasonography in patients undergoing in-vitro fertilization and embryo transfer (IVF/ET). Hum Reprod. 1991;6(2):232–237. doi:10.1093/oxfordjournals.humrep.a137312.
  • Balasch J, Rivera F, Jové IC, et al. Monoclonal enzyme immunoassay measurement of estradiol and progesterone receptors in in vitro fertilization and spontaneous cycles. Eur J Obstet Gynecol Reprod Biol. 1992;45(2):113–117. doi:10.1016/0028-2243(92)90226-o.
  • Noci I, Borri P, Coccia ME, et al. Hormonal patterns, steroid receptors and morphological pictures of endometrium in hyperstimulated IVF cycles. Eur J Obstet Gynecol Reprod Biol. 1997;75(2):215–220. doi:10.1016/s0301-2115(97)00126-7.
  • Shang K, Jia X, Qiao J, et al. Endometrial abnormality in women with polycystic ovary syndrome. Reprod Sci. 2012;19(7):674–683. doi:10.1177/1933719111430993.
  • Giudice LC. Endometrium in PCOS: implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20(2):235–244. doi:10.1016/j.beem.2006.03.005.
  • Savaris RF, Groll JM, Young SL, et al. Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles. J Clin Endocrinol Metab. 2011;96(6):1737–1746. doi:10.1210/jc.2010-2600.
  • Quezada S, Avellaira C, Johnson MC, et al. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil Steril. 2006;85(4):1017–1026. doi:10.1016/j.fertnstert.2005.09.053.
  • Indhavivadhana S, Rattanachaiyanont M, Wongwananuruk T, et al. Hyperandrogenemia is associated with thin endometrium in reproductive-aged thai women with polycystic ovary syndrome. Asian Biomed. 2013;7(4):545–551.
  • Casper RF. It’s time to pay attention to the endometrium. Fertil Steril. 2011;96(3):519–521. doi:10.1016/j.fertnstert.2011.07.1096.
  • Zong L, Zheng S, Meng Y, et al. Integrated transcriptomic analysis of the miRNA-mRNA interaction network in thin endometrium. Front Genet. 2021;12:589408. doi:10.3389/fgene.2021.589408.
  • Maekawa R, Taketani T, Mihara Y, et al. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod Med Biol. 2017;16(2):206–227. doi:10.1002/rmb2.12030.
  • Chen MJ, Yang JH, Peng FH, et al. Extended estrogen administration for women with thin endometrium in frozen-thawed in-vitro fertilization programs. J Assist Reprod Genet. 2006;23(7-8):337–342. doi:10.1007/s10815-006-9053-1.
  • Weckstein LN, Jacobson A, Galen D, et al. Low-dose aspirin for oocyte donation recipients with a thin endometrium: prospective, randomized study. Fertil Steril. 1997;68(5):927–930. doi:10.1016/s0015-0282(97)00330-0.
  • Sher G, Fisch JD. Effect of vaginal sildenafil on the outcome of in vitro fertilization (IVF) after multiple IVF failures attributed to poor endometrial development. Fertil Steril. 2002;78(5):1073–1076. doi:10.1016/s0015-0282(02)03375-7.
  • Jiang L, Xu X, Cao Z, et al. Comparison of frozen embryo transfer outcomes between uterine infusion of granulocyte colony-stimulating factor and growth hormone application in patients with thin endometrium: a retrospective study. Front Endocrinol (Lausanne). 2021;12:725202. doi:10.3389/fendo.2021.725202.
  • Dogra Y, Singh N, Vanamail P. Autologous platelet-rich plasma optimizes endometrial thickness and pregnancy outcomes in women with refractory thin endometrium of varied aetiology during fresh and frozen-thawed embryo transfer cycles. JBRA Assist Reprod. 2022;26(1):13–21. doi:10.5935/1518-0557.20210037.
  • Eftekhar M, Neghab N, Naghshineh E, et al. Can autologous platelet rich plasma expand endometrial thickness and improve pregnancy rate during frozen-thawed embryo transfer cycle? A randomized clinical trial. Taiwan J Obstet Gynecol. 2018;57(6):810–813. doi:10.1016/j.tjog.2018.10.007.
  • Yu HF, Chen HS, Rao DP, et al. Association between polycystic ovary syndrome and the risk of pregnancy complications: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2016;95(51):e4863. doi:10.1097/MD.0000000000004863.
  • Naver KV, Grinsted J, Larsen SO, et al. Increased risk of preterm delivery and pre-eclampsia in women with polycystic ovary syndrome and hyperandrogenaemia. BJOG. 2014;121(5):575–581. doi:10.1111/1471-0528.12558.
  • Sha T, Wang X, Cheng W, et al. A meta-analysis of pregnancy-related outcomes and complications in women with polycystic ovary syndrome undergoing IVF. Reprod Biomed Online. 2019;39(2):281–293. doi:10.1016/j.rbmo.2019.03.203.
  • Liu S, Mo M, Xiao S, et al. Pregnancy outcomes of women with polycystic ovary syndrome for the first in vitro fertilization treatment: a retrospective cohort study with 7678 patients. Front Endocrinol (Lausanne). 2020;11:575337. doi:10.3389/fendo.2020.575337.
  • Kaing A, Jaswa EA, Diamond MP, et al. Highly elevated level of antimüllerian hormone associated with preterm delivery in polycystic ovary syndrome patients who underwent ovulation induction. Fertil Steril. 2021;115(2):438–446. doi:10.1016/j.fertnstert.2020.06.015.
  • Wang M, Hao M, Liu N, et al. Nomogram for predicting the risk of preterm birth in women undergoing in vitro fertilization cycles. BMC Pregnancy Childbirth. 2023;23(1):324. doi:10.1186/s12884-023-05646-x.
  • Magnussen EB, Vatten LJ, Myklestad K, et al. Cardiovascular risk factors prior to conception and the length of pregnancy: population-based cohort study. Am J Obstet Gynecol. 2011;204(6):526.e1-8–526.e8. doi:10.1016/j.ajog.2011.02.016.
  • Christ JP, Gunning MN, Meun C, et al. Pre-conception characteristics predict obstetrical and neonatal outcomes in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(3):809–818. doi:10.1210/jc.2018-01787.
  • Makieva S, Saunders PT, Norman JE. Androgens in pregnancy: roles in parturition. Hum Reprod Update. 2014;20(4):542–559. doi:10.1093/humupd/dmu008.
  • Abruzzese GA, Silva AF, Velazquez ME, et al. Hyperandrogenism and polycystic ovary syndrome: effects in pregnancy and offspring development. WIREs Mech Dis. 2022;14(5):e1558. doi:10.1002/wsbm.1558.
  • Ackerman CM, Lowe LP, Dyer AR, et al. Maternal testosterone levels are associated with C-peptide levels in the mexican American subset of the hyperglycemia and adverse pregnancy outcome (HAPO) study cohort. Horm Metab Res. 2013;45(8):617–620. doi:10.1055/s-0033-1347262.
  • Dumesic DA, Damario MA, Session DR, et al. Ovarian morphology and serum hormone markers as predictors of ovarian follicle recruitment by gonadotropins for in vitro fertilization. J Clin Endocrinol Metab. 2001;86(6):2538–2543. doi:10.1210/jcem.86.6.7605.
  • Broer SL, van Disseldorp J, Broeze KA, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update. 2013;19(1):26–36. doi:10.1093/humupd/dms041.
  • Fleming R, Seifer DB, Frattarelli JL, et al. Assessing ovarian response: antral follicle count versus anti-Müllerian hormone. Reprod Biomed Online. 2015;31(4):486–496. doi:10.1016/j.rbmo.2015.06.015.
  • Dewailly D, Andersen CY, Balen A, et al. The physiology and clinical utility of anti-Mullerian hormone in women. Hum Reprod Update. 2014;20(3):370–385. doi:10.1093/humupd/dmt062.
  • Wang W, Tang X, Jiang Q, et al. Risk factors for clinical pregnancy loss after IVF in women with PCOS. Reprod Biomed Online. 2023;46(1):107–114. doi:10.1016/j.rbmo.2022.10.002.
  • Bahijri SM, Alissa EM, Akbar DH, et al. Estimation of insulin resistance in non-diabetic normotensive Saudi adults by QUICKI, HOMA-IR and modified QUICKI: a comparative study. Ann Saudi Med. 2010;30(4):257–264. doi:10.4103/0256-4947.65252.
  • Cena H, Chiovato L, Nappi RE. Obesity, polycystic ovary syndrome, and infertility: a new avenue for GLP-1 receptor agonists. J Clin Endocrinol Metab. 2020;105(8):e2695-709–e2709. doi:10.1210/clinem/dgaa285.
  • Barrea L, Arnone A, Annunziata G, et al. Adherence to the mediterranean diet, dietary patterns and body composition in women with polycystic ovary syndrome (PCOS). Nutrients. 2019;11(10):2278. doi:10.3390/nu11102278.
  • Metwally M, Ong KJ, Ledger WL, et al. Does high body mass index increase the risk of miscarriage after spontaneous and assisted conception? A meta-analysis of the evidence. Fertil Steril. 2008;90(3):714–726. doi:10.1016/j.fertnstert.2007.07.1290.
  • Neves AR, Montoya-Botero P, Sachs-Guedj N, et al. Association between the number of oocytes and cumulative live birth rate: a systematic review. Best Pract Res Clin Obstet Gynaecol. 2023;87:102307. doi:10.1016/j.bpobgyn.2022.102307.
  • Polyzos NP, Drakopoulos P, Parra J, et al. Cumulative live birth rates according to the number of oocytes retrieved after the first ovarian stimulation for in vitro fertilization/intracytoplasmic sperm injection: a multicenter multinational analysis including ∼15,000 women. Fertil Steril. 2018;110(4):661–670.e1. doi:10.1016/j.fertnstert.2018.04.039.
  • Jia R, Liu Y, Jiang R, et al. The optimal number of oocytes retrieved from PCOS patients receiving IVF to obtain associated with maximum cumulative live birth rate and live birth after fresh embryo transfer. Front Endocrinol (Lausanne). 2022;13:878214. doi:10.3389/fendo.2022.878214.
  • Datta AK, Campbell S, Felix N, et al. Oocyte or embryo number needed to optimize live birth and cumulative live birth rates in mild stimulation IVF cycles. Reprod Biomed Online. 2021;43(2):223–232. doi:10.1016/j.rbmo.2021.02.010.
  • He Y, Lu Y, Zhu Q, et al. Influence of metabolic syndrome on female fertility and in vitro fertilization outcomes in PCOS women. Am J Obstet Gynecol. 2019;221(2):138.e1–e12. doi:10.1016/j.ajog.2019.03.011.