525
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced glycolysis in the myometrium with ectopic endometrium of patients with adenomyosis: a preliminary study

ORCID Icon, , , , , , , , & show all
Article: 2332411 | Received 07 Aug 2023, Accepted 08 Mar 2024, Published online: 27 Mar 2024

References

  • Hermens M, van Altena AM, Velthuis I, et al. Endometrial cancer incidence in endometriosis and adenomyosis. Cancers (Basel). 2021;13(18):1. doi:10.3390/cancers13184592.
  • Kasvandik S, Samuel K, Peters M, et al. Deep quantitative proteomics reveals extensive metabolic reprogramming and cancer-like changes of ectopic endometriotic stromal cells. J Proteome Res. 2016;15(2):572–9. doi:10.1021/acs.jproteome.5b00965.
  • Struble J, Reid S, Bedaiwy MA. Adenomyosis: a clinical review of a challenging gynecologic condition. J Minim Invasive Gynecol. 2016;23(2):164–185. doi:10.1016/j.jmig.2015.09.018.
  • Mehasseb MK, Taylor AH, Pringle JH, et al. Enhanced invasion of stromal cells from adenomyosis in a three-dimensional coculture model is augmented by the presence of myocytes from affected uteri. Fertil Steril. 2010;94(7):2547–2551. doi:10.1016/j.fertnstert.2010.04.016.
  • Liao TL, Tzeng CR, Yu CL, et al. Estrogen receptor-beta in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis. Ann NY Acad Sci. 2015;1350(1):52–60. doi:10.1111/nyas.12872.
  • Jaworska M, Szczudło J, Pietrzyk A, et al. The warburg effect: a score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep. 2023;75(4):876–890. doi:10.1007/s43440-023-00504-1.
  • Ediriweera MK, Jayasena S. The role of reprogrammed glucose metabolism in cancer. Metabolites. 2023;13(3):345. doi:10.3390/metabo13030345.
  • Sukumar M, Roychoudhuri R, Restifo NP. Nutrient competition: a new axis of tumor immunosuppression. Cell. 2015;162(6):1206–1208. doi:10.1016/j.cell.2015.08.064.
  • Koppenol WH, Bounds PL, Dang CV. Otto warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–337. doi:10.1038/nrc3038.
  • Li J, Yang H, Zhang L, et al. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed Pharmacother. 2023;161:114526. doi:10.1016/j.biopha.2023.114526.
  • Gou Y, Wang H, Wang T, et al. Ectopic endometriotic stromal cells-derived lactate induces M2 macrophage polarization via Mettl3/Trib1/ERK/STAT3 signalling pathway in endometriosis. Immunology. 2023;168(3):389–402. doi:10.1111/imm.13574.
  • Young VJ, Brown JK, Maybin J, et al. Transforming growth factor-beta induced warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab. 2014;99(9):3450–3459. doi:10.1210/jc.2014-1026.
  • Huang Y, Yang Y, Shao Q, et al. Expression and role of adenosine monophosphate dependent protein kinase in adenomyosis. J Shandong Univ (Health Sci). 2019;57(02):93–98.
  • Liu W, Sheng S, Zhu C, et al. Increased NKG2A + CD8+ T-cell exhaustion in patients with adenomyosis. Mucosal Immunol. 2023;16(2):121–134. doi:10.1016/j.mucimm.2023.02.003.
  • Ferenczy A. Pathophysiology of adenomyosis. Hum Reprod Update. 1998;4(4):312–322. doi:10.1093/humupd/4.4.312.
  • Zelena E, Dunn WB, Broadhurst D, et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal Chem. 2009;81(4):1357–1364. doi:10.1021/ac8019366.
  • Want EJ, Masson P, Michopoulos F, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32. doi:10.1038/nprot.2012.135.
  • Kobayashi H, Imanaka S. Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: a narrative review. Reprod Med Biol. 2022;21(1):e12488.
  • Burns JS, Manda G. Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci. 2017;18(12):2755.
  • Okar DA, Manzano A, Navarro-Sabate A, et al. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 2001;26(1):30–35. doi:10.1016/s0968-0004(00)01699-6.
  • Hung YP, Albeck JG, Tantama M, et al. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 2011;14(4):545–554. doi:10.1016/j.cmet.2011.08.012.
  • Ackermann T, Zuidhof HR, Müller C, et al. C/EBPbeta-LIP mediated activation of the malate-aspartate shuttle sensitizes cells to glycolysis inhibition. Mol Metab. 2023;72:101726. doi:10.1016/j.molmet.2023.101726.
  • Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566–571. doi:10.1038/s42255-020-0243-4.
  • Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi:10.1016/j.redox.2020.101454.
  • Sun S, Li H, Chen J, et al. Lactic acid: no longer an inert and End-Product of glycolysis. Physiology (Bethesda). 2017;32(6):453–463. doi:10.1152/physiol.00016.2017.
  • Gu J, Zhou J, Chen Q, et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep. 2022;39(12):110986. doi:10.1016/j.celrep.2022.110986.