Publication Cover
Bioacoustics
The International Journal of Animal Sound and its Recording
Volume 33, 2024 - Issue 1
1,130
Views
0
CrossRef citations to date
0
Altmetric
Articles

Audio data compression affects acoustic indices and reduces detections of birds by human listening and automated recognisers

ORCID Icon, ORCID Icon, , , , , & show all
Pages 74-90 | Received 07 Jul 2023, Accepted 14 Nov 2023, Published online: 12 Dec 2023

References

  • Araya-Salas M, Smith-Vidaurre G, Webster M. 2019. Assessing the effect of sound file compression and background noise on measures of acoustic signal structure. Bioacoustics. 28(1):57–73. doi: 10.1080/09524622.2017.1396498.
  • Arnold TW. 2010. Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manage. 74(6):1175–1178. doi: 10.1111/j.1937-2817.2010.tb01236.x.
  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67:1–48. doi: 10.18637/jss.v067.i01.
  • Browning E, Gibb R, Glover-Kapfer P, Jones KE. 2017. Passive acoustic monitoring in ecology and conservation. WWF Conserv Technol Series. 1:1–74.
  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. 2001. Introduction to distance sampling: estimating abundance of biological populations. 2nd ed. New York, NY, USA: Oxford University Press.
  • Bürkner PC. 2017. brms: An R package for bayesian multilevel models using Stan. J Stat Soft. 80(1):1–28. doi: 10.18637/jss.v080.i0.
  • Gibb R, Browning E, Glover-Kapfer P, Jones KE, Börger L. 2019. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecology Evol. 10(2):169–185. doi: 10.1111/2041-210X.13101.
  • Graciarena M, Delplanche M, Shriberg M, Stolcke A, Ferrer L. 2010. Acoustic front-end optimization for bird species recognition. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing; 293–296. doi: 10.1109/ICASSP.2010.5495923.
  • Hespanhol L, Vallio CS, Costa LM, Saragiotto BT. 2019. Understanding and interpreting confidence and credible intervals around effect estimates. Braz J Phys Ther. 4(4):290–301. doi: 10.1016/j.bjpt.2018.12.006.
  • Huang H, Shu H, Yu R. 2014. Lossless audio compression in the new IEEE standard for advanced audio coding. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): 6934–6938. doi: 10.1109/ICASSP.2014.6854944.
  • Jayant N, Johnston J, Safranek R. 1993. Signal compression based on models of human perception. Proceedings of the IEEE. 81:1385–1422.
  • Johansson O, Samelius G, Wikberg E, Chapron G, Mishra C, Low M. 2020. Identification errors in camera-trap studies result in systematic population overestimation. Sci Rep. 10(1):6393. doi: 10.1038/s41598-020-63367-z.
  • Kahl S, Wood CM, Eibl M, Klinck H. 2021. BirdNET: a deep learning solution for avian diversity monitoring. Ecol Inform. 61:101236. doi: 10.1016/j.ecoinf.2021.101236.
  • Katz J, Hafner SD, Donovan T. 2016. Assessment of error rates in acoustic monitoring with the R package monitoR. Bioacoustics. 25:177–196. doi: 10.1080/09524622.2015.1133320.
  • Knight EC, Bayne EM. 2019. Classification threshold and training data affect the quality and utility of focal species data processed with automated audio-recognition software. Bioacoustics. 28:539–554. doi: 10.1080/09524622.2018.1503971.
  • Knight EC, Hannah KC, Foley GJ, Scott CD, Brigham RM, Bayne EM. 2017. Recommendations for acoustic recognizer performance assessment and applications to five common automated signal recognition programs. ACE. 12(2):14. doi: 10.5751/ACE-01114-120214.
  • Knight EC, Solymos P, Scott CD, Bayne EM. 2020. Validation prediction: a flexible protocol to increase efficiency of automated acoustic processing for wildlife research. Ecol Appl. 30:e02140. doi: 10.1002/eap.2140.
  • Krzywinski M, Altman N. 2013. The meaning of error bars is often misinterpreted, as is the statistical significance of the overlap. Nat Methods. 10:921–922. doi: 10.1038/nmeth.2659.
  • Phillips YF, Towsey M, Roe P, Radford CA. 2018. Revealing the ecological content of long-duration audio-recordings of the environment through clustering and visualization. PLoS ONE. 13(3):e0193345. doi: 10.1371/journal.pone.0193345.
  • Pieretti N, Farina A, Morri D. 2011. A new method to infer the singing activity of an avian community: the acoustic complexity index (ACI). Ecological Indicators. 11(3):868–873. doi: 10.1016/j.ecolind.2010.11.005.
  • Porneluzi P, Van Horn MA, Donovan TM. 2011. Ovenbird (Seiurus aurocapilla), version 2.0. In: Poole AF, editor(s). In the birds of North America. Ithaca, New York (NY): Cornell Lab of Ornithology.
  • Priyadarshani N, Marsland S, Castro I. 2018. Automated birdsong recognition in complex acoustic environments: a review. J Avian Biol. e01447. doi: 10.1111/jav.01447.
  • Rempel RS, Hobson KA, Holborn G, van Wilgenburg SL, Elliott J. 2005. Bioacoustic monitoring of forest songbirds: interpreter variability and effects of configuration and digital processing methods in the laboratory. J Field Ornithol. 76:1–11. http://jstor.org/stable/4151255.
  • Schmidt BR, Cruickshank SS, Bühler C, Bergamini A. 2023. Observers are a key source of detection heterogeneity and biased occupancy estimates in species monitoring. Biol Conserv. 283:110102. doi: 10.1016/j.biocon.2023.110102.
  • Shonfield J, Bayne EM. 2017. Autonomous recording units in avian ecological research: current use and future applications. Avian Conserv Ecol. 12(1):14. doi: 10.5751/ACE-00974-120114.
  • Sueur J, Pavoine S, Hamerlynck O, Duvail S, Reby D. 2008. Rapid acoustic survey for biodiversity appraisal. PLoS ONE. 3(12):e4065. doi: 10.1371/journal.pone.0004065.
  • Sugai LSM, Desjonqueres C, Silva TSF, Llusia D, Pettorelli N, Lecours V. 2019a. A roadmap for survey designs in terrestrial acoustic monitoring. Remote Sens Ecol Conserv. 6(3):220–235. doi: 10.1002/rse2.131.
  • Sugai LSM, Silva TSF, Ribeiro JW Jr., Llusia D. 2019b. Terrestrial passive acoustic monitoring: review and perspectives. BioScience. 69(1):15–25. doi: 10.1093/biosci/biy147.
  • The Bioacoustic Unit. 2019. WildTrax acoustic transcription user guide. Version 2.0. Edmonton (AB): University of Alberta and Alberta Biodiversity Monitoring Institute.
  • Towsey MW, Wimmer J, Williamson I, Roe P. 2014. The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecol Inform. 21:110–119. doi: 10.1016/j.ecoinf.2013.11.007.
  • Truskinger A, Cottman-Fields M, Eichinski P, Towsey M, Roe P. 2014. Practical analysis of big acoustic sensor data for environmental monitoring. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing. p. 91–98. doi: 10.1109/BDCloud.2014.29.
  • Villanueva-Rivera LJ, Pijanowski BC. 2018. Soundecology: soundscape ecology. R package 1.3.3. https://cran.r-project.org/web/packages/soundecology/index.html.
  • Villanueva-Rivera LJ, Pijanowski BC, Doucette J, Pekin B. 2011. A primer of acoustic analysis for landscape ecologists. Landsc Ecol. 26(9):1233–1246. doi: 10.1007/s10980-011-9636-9.
  • Ware L, Mahon CL, McLeod L, Jetté JF. 2023. Artificial intelligence (BirdNET) supplements manual methods to maximize bird species richness from acoustic data sets generated from regional monitoring. Can J Zool E-First. doi: 10.1139/cjz-2023-0044.
  • Yip DA, Bayne EM, Solymos P, Campbell J, Proppe D. 2017. Sound attenuation in forests and roadside environments: implications for avian point-count surveys. Condor. 119(1):73–84. doi: 10.1650/CONDOR-16-93.1.
  • Yip DA, Knight EC, Haave‐Audet E, Wilson SJ, Charchuk C, Scott CD, Sólymos P, Bayne EM. 2020. Sound level measurements from audio recordings provide objective distance estimates for distance sampling wildlife populations. Remote Sens Ecol Conserv. 6(3):301–315. doi: 10.1002/rse2.118.