202
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Towards an energy management system based on a multi-agent architecture and LSTM networks

ORCID Icon &
Pages 469-487 | Received 02 Apr 2021, Accepted 18 Jun 2022, Published online: 27 Jun 2022

References

  • U.S. Energy Information Administration. (2018), Retrieved April 1, 2020, from www.eia.gov.
  • U.S. Environmental Protection Agency. (2019), Retrieved March 26, 2020, from www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references.
  • Abbasimehr, H., Shabani, M., & Yousefi, M. (2020). An optimized model using LSTM network for demand forecasting. Computers & Industrial Engineering, 143, 106435. https://doi.org/10.1016/j.cie.2020.106435
  • Abuella, M., & Chowdhury, B. (2015). Solar power forecasting using artificial neural networks. North American Power Symposium (NAPS), IEEE, Charlotte, USA.
  • Ahat, M., Ben Amor, S., Bui, M., Lamure, M., & Courel, M. (2009). Pollution modeling and simulation with multi-agent and pretopology. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 4, 225–231 https://doi.org/10.1007/978-3-642-02466-5_20.
  • Ahmad, M., Adnan, S. M., Zaidi, S., & Bhargava, P. (2020). A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens. In Construction and building materials, Elsevier, 248, 118475.
  • Aulinas, M., Turon, C., & Sànchez-Marrè, M. (2009). Agents as a decision support tool in environmental processes: The State of the art. In Whitestein series in software agent technologies and autonomic computing, Birkhäuser Basel, 5–35.
  • Bai, Y., & Li, C. (2016). Daily natural gas consumption forecasting based on a structure calibrated support vector regression approach. Energy and Buildings, 127, 571–579. https://doi.org/10.1016/j.enbuild.2016.06.020
  • Barak, S., & Sadegh, S. (2016). Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. International Journal of Electrical Power & Energy Systems, 82, 92–104. https://doi.org/10.1016/j.ijepes.2016.03.012
  • Bas, E., Egrioglu, E., & Koleman, E. (2021). Training simple recurrent deep artificial neural network for forecasting using particle swarm optimization. Granular Computing.
  • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181
  • Bhaskar, K., & Singh, S. N. (2012). AWNN-Assisted wind power forecasting using feed-forward neural network. IEEE Transactions on Sustainable Energy, 3(2), 306–315. https://doi.org/10.1109/TSTE.2011.2182215
  • Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R., Ziane, A., Sahouane, N., Attoui, I., Mostefaoui, M., & Touaba, O. (2016). Status of renewable energy potential and utilization in Algeria. Journal of Cleaner Production, 246 https://doi.org/10.1016/j.jclepro.2019.119011.
  • Bouziane, S. E., & Khadir, M. T. (2020). Predictive agents for the forecast of CO2 emissions issued from electrical energy production and gas consumption. In Embedded systems and artificial intelligence. advances in intelligent systems and computing, Springer Singapore, 1076, 183–191.
  • Box, G. E. P., & Jenkins, G. M. (1996). Time series analysis: Forecasting and control. Holden-Day.
  • Corchado, M. J., Mata, A., & Rodriguez, S. (2009). A multi-agent system for modeling and monitoring the evolution of oil slicks in open oceans. Advanced Agent-Based Environmental Management Systems, Basel, 91–117 https://doi.org/10.1007/978-3-7643-8900-0_5.
  • Di Lecce, V., Amato, A., Martines, C., Di Bari, P., & Dario, R. (2009). Air quality control for health care centres. The application of an intelligent distributed system. IEEE Workshop Environmental, Energy, and Structural Monitoring Systems, 27-30. doi:10.1109/EESMS.2009.5341321
  • Dragomir, E. G., & Oprea, M. (2013). A multi-agent system for power plants air pollution monitoring. IFAC Proceedings Volumes, 46(6), 89–94 https://doi.org/10.3182/20130522-3-RO-4035.00017.
  • Edenhofer, O., Pichs‐Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., & von Stechow, C. (2011). Summary for Policymakers. IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press.
  • El Fazziki, A., Sadiq, A., Ouarzazi, J., & Sadgal, M. (2015). A multi-agent framework for a hadoop based air quality decision support system. Conference on Advanced Information Systems Engineering, Stockholm, Sweden.
  • El Fazziki, A., Benslimane, D., Sadiq, A., Ouarzazi, J., & Sadgal, M. (2017). An agent based traffic regulation system for the roadside air quality control. IEEE Access, 5, 13192–13201. https://doi.org/10.1109/ACCESS.2017.2725984
  • Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008a). Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energy and Buildings, 40(6), 1074–1083. https://doi.org/10.1016/j.enbuild.2007.10.002
  • Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008b). Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing. International Journal of Thermal Sciences, 47(4), 431–441 https://doi.org/10.1016/j.ijthermalsci.2007.03.004.
  • Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008c). Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. International Journal of Refrigeration, 35(1), 65–74. https://doi.org/10.1016/j.ijrefrig.2007.06.007
  • Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008d). Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Systems with Applications, 35(4), 1940–1948. https://doi.org/10.1016/j.eswa.2007.08.081
  • Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008e). Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS. Building and Environment, 43(12), 2178–2187. https://doi.org/10.1016/j.buildenv.2008.01.002
  • Esen, H., Ozgen, F., Esen, M., & Sengur, A. (2009). Modelling of a new solar air heater through least-squares support vector machines. Expert Systems with Applications, 63(7), 10673–10682.
  • Esen, H., Esen, M., & Ozsolak, O. (2017). Modelling and experimental performance analysis of solar-assisted ground source heat pump system. Journal of Experimental and Theoretical Artificial Intelligence, 29(1), 1–17. https://doi.org/10.1080/0952813X.2015.1056242
  • Fagiani, M., Squartini, S., Gabrielli, L., Spinsante, S., & Piazza, F. (2015). Domestic water and natural gas demand forecasting by using heterogeneous data: A preliminary study. Advances in neural networks. Computational and Theoretical Issues, 37, 185–194 https://doi.org/10.1007/978-3-319-18164-6_18.
  • Farfar, K. E., & Khadir, M. T. (2018). A two-stage short-term load forecasting approach using temperature daily profiles estimation. Neural Computing & Applications, 31(8), 3909–3919. https://doi.org/10.1007/s00521-017-3324-x
  • Gers, F. A., Schmidhuber, A., & Cummins, F. A. (2000). Learning to forget: Continual prediction with LSTM. Neural Computing, 12, 2451–2471 https://doi.org/10.1049/cp:19991218.
  • Ghazi, S., Dugdale, J., & Khadir, M. T. (2016). Modelling air pollution crises using multi-agent simulation. 49th Hawaii International Conference on System Sciences (HICSS) (pp.172–177). Koloa, HI.
  • Hippert, H., Pedreira, C., & Souza, R. (2001). Neural networks for short-term load forecasting: A review and evaluation. IEEE Transactions on Power Systems, 16(1), 44–55. https://doi.org/10.1109/59.910780
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hsu, Y., Tung, T., Yeh, H., & Lu, C. (2018). Two-Stage artificial neural network model for short-term load forecasting. IFAC-PapersOnLine, 51(28), 678–683. https://doi.org/10.1016/j.ifacol.2018.11.783
  • Huang, S., & Kuang, R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Transactions on Power Systems, 18(2), 673–679. https://doi.org/10.1109/TPWRS.2003.811010
  • Hulsmann, F., Gerike, R., & Ketzel, M. (2014). Modelling traffic and air pollution in an integrated approach – The case of Munich. Urban Climate, 10(4), 732–744. https://doi.org/10.1016/j.uclim.2014.01.001
  • Jetcheva, J. G., Majidpour, M., & Chen, W. P. (2014). Neural network model ensembles for building-level electricity load forecasts. Energy and Buildings, 84, 214–223. https://doi.org/10.1016/j.enbuild.2014.08.004
  • Jiang, P., Li, R., Liu, N., & Gao, Y. (2020). A novel composite electricity demand forecasting framework by data processing and optimized support vector machine. Applied Energy, 260, 114243. https://doi.org/10.1016/j.apenergy.2019.114243
  • Karmiani, D., Kazi, R., Nambisan, A., Shah, A., & Kamble, V. (2019). Comparison of predictive algorithms: Backpropagation, SVM, LSTM and Kalman filter for stock market. Amity International Conference on Artificial Intelligence (AICAI), IEEE, Dubai, United Arab Emirates.
  • Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In proceedings 3rd International Conference on Learning Representations (ICLR), San Diego, USA.
  • Kizilaslan, R., & Karlik, B. (2008). Comparison neural networks models for short term forecasting of natural gas consumption in Istanbul. First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), IEEE, Ostrava, 448–453.
  • Kocak, C., Egrioglu, E., & Bas, E. (2021). A new deep intuitionistic fuzzy time series forecasting method based on long short‑term memory. The Journal of Supercomputing, 77(6), 6178–6196. https://doi.org/10.1007/s11227-020-03503-8
  • Kolen, J. F., & Kremer, S.: Gradient flow in recurrent nets (2001). The difficulty of learning long-term dependencies, A field guide to dynamical recurrent networks, Wiley-IEEE Press.
  • Kong, W., Dong, Z., Jia, Y., Hill, D., Xu, Y., & Zhang, Y. (2017). Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart Grid, 10(1), 841–851. https://doi.org/10.1109/TSG.2017.2753802
  • Laib, O., Khadir, M. T., & Chouired, L. (2016). Forecasting yearly natural gas consumption using artificial neural network for the algerian market. 4th International Conference on Control Engineering & Information Technology (CEIT), IEEE, Hammamet, Tunisia, 1-5.
  • Laib, O., Khadir, M. T., & Mihaylova, L. (2019). Toward efficient energy systems based on natural gas consumption prediction with LSTM recurrent neural networks. Energy, Elsevier, 177, 530–542. https://doi.org/10.1016/j.energy.2019.04.075
  • Langkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series. Pattern Recognition Letters, 42, 11–24. https://doi.org/10.1016/j.patrec.2014.01.008
  • Lu, H., Azimi, M., & Iseley, T. (2009). Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine. Energy Reports, 5(1), 666–677. https://doi.org/10.1016/j.egyr.2019.06.003
  • Lusis, P., Khalilpour, K., Andrew, L., & Liebman, A. (2017). Short-term residential load forecasting: Impact of calendar effects and forecast granularity. Applied Energy, 205, 654–659. https://doi.org/10.1016/j.apenergy.2017.07.114
  • Memarzadeh, G., & Keynia, F. (2020). A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. Energy conversion and management, Elsevier, 213, 112824.
  • Papaleonidas, A., & Iliadis, L. (2012). Hybrid and reinforcement multi agent technology for real time air pollution monitoring. Artificial Intelligence Applications and Innovations, 381, 274–284 https://doi.org/10.1007/978-3-642-33409-2_29.
  • Peng, X., Xiong, L., Wen, J., Xu, Y., Fan, W., Feng, S., & Wang, B. (2016). A very short-term wind power prediction approach based on multilayer restricted boltzmann machine. PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), IEEE, Xian, China.
  • Russell, S. J., & Norvig, P. (1995). Artificial Intelligence “A modern approach”, Prentice-Hall , 25.
  • Soldo, B. (2012). Forecasting natural gas consumption. Applied Energy, 92, 26–37. https://doi.org/10.1016/j.apenergy.2011.11.003
  • Szoplik, J. (2015). Forecasting of natural gas consumption with artificial neural networks. Energy, 85, 208–220. https://doi.org/10.1016/j.energy.2015.03.084
  • Taşpınar, F., Çelebi, N., & Tutkun, N. (2013). Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy and Buildings, 56, 23–31. https://doi.org/10.1016/j.enbuild.2012.10.023
  • Tonkovic, Z., Zekic-Susac, M., & Somolanji, M. (2009). Predicting natural gas consumption by neural networks. Tehniki Vjesnik, 16(3), 51–61 https://hrcak.srce.hr/40969.
  • Vidyanandan, K. V. (2017). An overview of factors affecting the performance of solar PV systems. Energy Scan, 27, 2–8.
  • Wang, F., Xuan, Z., Zhen, Z., Li, K., Wang, T., & Shi, M. (2020). A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. In Energy conversion and management, Elsevier, 212, 112766.
  • Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engineering Review, 10(2), 115–152. https://doi.org/10.1017/S0269888900008122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.