220
Views
28
CrossRef citations to date
0
Altmetric
Original article

Platelet-derived microvesicles induce differential gene expression in monocytic cells: A DNA microarray study

, , , , , , , , & show all
Pages 571-576 | Received 07 Apr 2006, Accepted 19 Apr 2006, Published online: 07 Jul 2009

References

  • Gear AR, Camerini D. Platelet chemokines and chemokine receptors: Linking hemostasis, inflammation, and host defense. Microcirculation 2003; 10: 335–350
  • Weyrich AS, Zimmerman GA. Platelets: Signaling cells in the immune continuum. Trends Immunol 2004; 25: 489–495
  • Martinson J, Bae J, Klingemann HG, Tam Y. Activated platelets rapidly up-regulate CD40L expression and can effectively mature and activate autologous ex vivo differentiated DC. Cytotherapy 2004; 6: 487–497
  • Furie B, Furie BC, Flaumenhaft R. A journey with platelet P-selectin: The molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 2001; 86: 214–221
  • Scholz T, Temmler U, Krause S, Heptinstall S, Lösche W. Transfer of tissue factor from platelets to monocytes: Role of platelet-derived microvesicles and CD62P. Thromb Haemost 2002; 88: 1033–1038
  • Siddiqui FA, Desai H, Amirkhosravi A, Amaya M, Francis JL. The presence and release of tissue factor from human platelets. Platelets 2002; 13: 247–253
  • Zillmann A, Luther T, Muller I, Kotzsch M, Spannagl M, Kauke T, Oelschlagel U, Zahler S, Engelmann B. Platelet-associated tissue factor contributes to the collagen-triggered activation of blood coagulation. Biochem Biophys Res Commun 2001; 281: 603–609
  • Bode AP, Hickerson DHM. Characterization and quantitation by flow cytometry of membarneous microparticles formed during activation of platelet suspensions with ionophore or thrombin. Platelets 2000; 11: 259–271
  • Freyssinet JM. Cellular microparticles: What are they bad or good for?. J Thromb Haemost 2003; 1: 1655–1662
  • Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: New players in the field of vascular disease?. Eur J Clin Invest 2004; 34: 392–401
  • Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101: 841–843
  • Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y. Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome. Thromb Haemost 2003; 89: 506–512
  • Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002; 30: 450–459
  • Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 1998; 102: 136–144
  • Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 2001; 158: 277–287
  • http://www.sirs-lab.de
  • Tomic V, Russwurm S, Moller E, Claus RA, Blaess M, Brunkhorst F, Bruegel M, Bode K, Bloos F, Wippermann J, Wahlers T, Deigner HP, Thiery J, Reinhart K, Bauer M. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation 2005; 112: 2912–2920
  • Scholz T, Zhao L, Temmler U, Heptinstall S, Lösche W. The GPIIb/IIIa antagonist eptifibatide markedly potentiates platelet-leukocyte interaction and tissue factor expression following platelet activation in whole blood in vitro. Platelets 2002; 13: 401–406
  • Lösche W, Scholz T, Temmler U, Oberle V, Claus RA. Platelet-derived microvesicles transfer tissue factor to monocytes but not to neutrophils. Platelets 2004; 15: 109–116
  • Ziegler-Heitbrock HW, Thiel E, Futter A, Herzog V, Wirtz A, Riethmüller G. Establishment of a human cell line (MONOMAC 6) with characteristics of mature monocytes. Int J Cancer 1988; 41: 456–461
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159
  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29: 365–371
  • Hilberg T, Deigner HP, Moller E, Claus RA, Ruryk A, Glaser D, Landre J, Brunkhorst FM, Reinhart K, Gabriel HH, Russwurm S. Transcription in response to physical stress–clues to the molecular mechanisms of exercise-induced asthma. FASEB J 2005; 19: 1492–1494
  • Huber W, von HA, Sultmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18(Suppl. 1)S96–104
  • Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445
  • Edsall L, Vann L, Milstien S, Spiegel S. Enzymatic method for measurement of sphingosine 1-phosphate. Methods Enzymol 2000; 312: 9–16
  • Denis CV, Kwack K, Saffaripour S, Maganti S, Andre P, Schaub RG, Wagner DD. Interleukin 11 significantly increases plasma von Willebrand factor and factor VIII in wild type and von Willebrand disease mouse models. Blood 2001; 97: 465–472
  • Endo S, Inada K, Arakawa N, Yamada Y, Nakae H, Takakuwa T, Namiki M, Inoue Y, Shimamura T, Suzuki T, Taniguchi S, Yoshida M. Interleukin 11 levels in patients with disseminated intravascular coagulation. Res Commun Mol Pathol Pharmacol 1996; 91: 253–256
  • Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.