1,106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A lightweight and style-robust neural network for autonomous driving in end side devices

, , &
Article: 2155613 | Received 31 May 2022, Accepted 20 Nov 2022, Published online: 28 Dec 2022

References

  • Badawi, M., Ibrahim, S. A., Mansour, D. E. A., El-Faraskoury, A. A., S. A. Ward, Mahmoud, K., & Darwish, M. M. (2022). Reliable estimation for health index of transformer oil based on novel combined predictive maintenance techniques. IEEE Access, 10, 25954–25972. https://doi.org/10.1109/ACCESS.2022.3156102
  • Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., & Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, 120, 108102. https://doi.org/10.1016/j.patcog.2021.108102
  • Bai, X., Zhou, J., Ning, X., & Wang, C. (2022). 3d data computation and visualization. Elsevier.
  • Bogdoll, D., Nitsche, M., & Zöllner, J. M. (2022). Anomaly detection in autonomous driving: A survey. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4488–4499). IEEE.
  • Choi, Y., Choi, M., Kim, M., Ha, J. W., Kim, S., & Choo, J. (2018). Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8789–8797). IEEE.
  • Choi, Y., Uh, Y., Yoo, J., & Ha, J. W. (2020). Stargan v2: Diverse image synthesis for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8188–8197). IEEE.
  • Codevilla, F., Müller, M., López, A., Koltun, V., & Dosovitskiy, A. (2018). End-to-end driving via conditional imitation learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4693–4700). IEEE.
  • Codevilla, F., Santana, E., López, A. M., & Gaidon, A. (2019). Exploring the limitations of behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9329–9338). IEEE.
  • Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017, November). CARLA: An open urban driving simulator. In S. Levine, V. Vanhoucke, & K. Goldberg (Eds.), Proceedings of the 1st annual conference on robot learning (Vol. 78, pp. 1–16). PMLR. http://proceedings.mlr.press/v78/dosovitskiy17a.html.
  • Elsisi, M. (2020). Optimal design of nonlinear model predictive controller based on new modified multitracker optimization algorithm. International Journal of Intelligent Systems, 35(11), 1857–1878. https://doi.org/10.1002/int.v35.11
  • Elsisi, M. (2022). Improved grey wolf optimizer based on opposition and quasi learning approaches for optimization: Case study autonomous vehicle including vision system. Artificial Intelligence Review, 55(7), 5597–5620. https://doi.org/10.1007/s10462-022-10137-0
  • Elsisi, M., & Tran, M. Q. (2021). Development of an IoT architecture based on a deep neural network against cyber attacks for automated guided vehicles. Sensors, 21(24), 8467. https://doi.org/10.3390/s21248467
  • Elsisi, M., Tran, M. Q., Mahmoud, K., Mansour, D. E. A., Lehtonen, M., & Darwish, M. M. (2022). Effective IoT-based deep learning platform for online fault diagnosis of power transformers against cyberattacks and data uncertainties. Measurement, 190, 110686. https://doi.org/10.1016/j.measurement.2021.110686
  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). IEEE.
  • Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2017, July). Image-to-image translation with conditional adversarial networks. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 5967–5976). IEEE Computer Society.
  • Li, Z., Motoyoshi, T., Sasaki, K., Ogata, T., & Sugano, S. (2018). Rethinking self-driving: Multi-task knowledge for better generalization and accident explanation ability.
  • Lv, K., Du, H., Hou, Y., Deng, W., Sheng, H., Jiao, J., & Zheng, L. (2019). Vehicle re-identification with location and time stamps. In CVPR workshops (pp. 399–406). IEEE.
  • Lv, K., Sheng, H., Xiong, Z., Li, W., & Zheng, L. (2020a). Improving driver gaze prediction with reinforced attention. IEEE Transactions on Multimedia, 23, 4198–4207. https://doi.org/10.1109/TMM.2020.3038311
  • Lv, K., Sheng, H., Xiong, Z., Li, W., & Zheng, L. (2020b). Pose-based view synthesis for vehicles: A perspective aware method. IEEE Transactions on Image Processing, 29, 5163–5174. https://doi.org/10.1109/TIP.83
  • Miao, J., Wang, Z., Ning, X., Xiao, N., Cai, W., & Liu, R. (2022). Practical and secure multifactor authentication protocol for autonomous vehicles in 5G. Software: Practice and Experience.
  • Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp. 1928–1937). PMLR.
  • Pan, X., You, Y., Wang, Z., & Lu, C. (2017). Virtual to real reinforcement learning for autonomous driving.
  • Sauer, A., Savinov, N., & Geiger, A. (2018). Conditional affordance learning for driving in urban environments. In Conference on robot learning (pp. 237–252). PMLR.
  • Sheng, H., Lv, K., Liu, Y., Ke, W., Lyu, W., Xiong, Z., & Li, W. (2020). Combining pose invariant and discriminative features for vehicle reidentification. IEEE Internet of Things Journal, 8(5), 3189–3200. https://doi.org/10.1109/JIoT.6488907
  • Wang, C., Ning, X., Sun, L., Zhang, L., Li, W., & Bai, X. (2022). Learning discriminative features by covering local geometric space for point cloud analysis. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15. https://doi.org/10.1109/TGRS.2022.3170493
  • Wang, C., Wang, X., Zhang, J., Zhang, L., Bai, X., Ning, X., & Hancock, E. (2022). Uncertainty estimation for stereo matching based on evidential deep learning. Pattern Recognition, 124, 108498. https://doi.org/10.1016/j.patcog.2021.108498
  • Wu, J., Huang, Z., & Lv, C. (2022). Uncertainty-aware model-based reinforcement learning: Methodology and application in autonomous driving. IEEE Transactions on Intelligent Vehicles, 1–10. https://doi.org/10.1109/TIV.2022.3185159
  • Yan, C., Pang, G., Bai, X., Liu, C., Xin, N., Gu, L., & Zhou, J. (2021). Beyond triplet loss: Person re-identification with fine-grained difference-aware pairwise loss. IEEE Transactions on Multimedia, 24, 1665–1677. https://doi.org/10.1109/TMM.2021.3069562
  • Zablocki, É., Ben-Younes, H., Pérez, P., & Cord, M. (2022). Explainability of deep vision-based autonomous driving systems: Review and challenges. International Journal of Computer Vision, 130(10), 2425–2452. https://doi.org/10.1007/s11263-022-01657-x
  • Zhang, H., Lin, Y., Han, S., Wang, S., & Lv, K. (2022). Conservative distributional reinforcement learning with safety constraints. arXiv preprint arXiv:2201.07286.
  • Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223–2232). IEEE.