939
Views
0
CrossRef citations to date
0
Altmetric
Special Issue: Efficient Deep Neural Networks for Image Processing in End Side Devices

FPGA-oriented lightweight multi-modal free-space detection network

, , &
Article: 2159333 | Received 31 May 2022, Accepted 06 Dec 2022, Published online: 28 Dec 2022

References

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.34
  • Bai, L., Lyu, Y., & Huang, X. (2020). Roadnet-rt: High throughput CNN architecture and SOC design for real-time road segmentation. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(2), 704–714. https://doi.org/10.1109/TCSI.8919
  • Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., & Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, 120, Article ID 108102. https://doi.org/10.1016/j.patcog.2021.108102
  • Caltagirone, L., Bellone, M., Svensson, L., & Wahde, M. (2019). LIDAR–camera fusion for road detection using fully convolutional neural networks. Robotics and Autonomous Systems, 111, 125–131. https://doi.org/10.1016/j.robot.2018.11.002
  • Carreira-Perpinán, M. A., & Idelbayev, Y. (2018). ‘Learning-compression’ algorithms for neural net pruning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8532–8541). Salt Lake City, USA.
  • Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848. https://doi.org/10.1109/TPAMI.2017.2699184
  • Chen, X., Wang, Y., Zhang, Y., Du, P., Xu, C., & Xu, C. (2020). Multi-task pruning for semantic segmentation networks. arXiv preprint arXiv:2007.08386.
  • Chen, Z., & Chen, Z. (2017). RBNet: A deep neural network for unified road and road boundary detection. In International conference on neural information processing (pp. 677–687). Guangzhou, China.
  • Chen, Z., Zhang, J., & Tao, D. (2019). Progressive lidar adaptation for road detection. IEEE/CAA Journal of Automatica Sinica, 6(3), 693–702. https://doi.org/10.1109/JAS.6570654
  • Cordts, M., Rehfeld, T., Schneider, L., Pfeiffer, D., Enzweiler, M., Roth, S., Pollefeys, M., & Franke, U. (2017). The stixel world: A medium-level representation of traffic scenes. Image and Vision Computing, 68, 40–52. https://doi.org/10.1016/j.imavis.2017.01.009
  • Couprie, C., Farabet, C., Najman, L., & LeCun, Y. (2013). Indoor semantic segmentation using depth information. arXiv preprint arXiv:1301.3572.
  • Dubey, A., Chatterjee, M., & Ahuja, N. (2018). Coreset-based neural network compression. In Proceedings of the European conference on computer vision (ECCV) (pp. 454–470). Munich, Germany.
  • Eigen, D., & Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the IEEE international conference on computer vision (pp. 2650–2658). Santiago, Chile.
  • Fan, R., Wang, H., Cai, P., & Liu, M. (2020). SNE-RoadSeg: Incorporating surface normal information into semantic segmentation for accurate freespace detection. In European conference on computer vision (pp. 340–356).
  • Fritsch, J., Kuehnl, T., & Geiger, A. (2013). A new performance measure and evaluation benchmark for road detection algorithms. In 16th international IEEE conference on intelligent transportation systems (ITSC 2013) (pp. 1693–1700). Hague, Netherland.
  • Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2019). Dual attention network for scene segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3146–3154). Long Beach, USA.
  • Gu, S., Yang, J., & Kong, H. (2021). A cascaded LiDAR-camera fusion network for road detection. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 13308–13314). Xian, China.
  • Guo, Y., Yao, A., & Chen, Y. (2016). Dynamic network surgery for efficient DNNs. Advances in Neural Information Processing Systems, 29, 1379–1387.
  • Gupta, S., Girshick, R., Arbeláez, P., & Malik, J. (2014). Learning rich features from RGB-D images for object detection and segmentation. In European conference on computer vision (pp. 345–360). Zurich, Switzerlan.
  • Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.
  • Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. Advances in Neural Information Processing Systems, 28, 1135–1143.
  • Han, X., Lu, J., Zhao, C., You, S., & Li, H. (2018). Semisupervised and weakly supervised road detection based on generative adversarial networks. IEEE Signal Processing Letters, 25(4), 551–555. https://doi.org/10.1109/LSP.2018.2809685
  • Hazirbas, C., Ma, L., Domokos, C., & Cremers, D. (2016). FuseNet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. In Asian conference on computer vision (pp. 213–228). Taipei, China.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). Las Vegas, USA.
  • He, W., Wu, M., Liang, M., & Lam, S. K. (2021). CAP: Context-aware pruning for semantic segmentation. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 960–969).
  • He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866.
  • He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter pruning via geometric median for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4340–4349). Long Beach, USA.
  • He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE international conference on computer vision (pp. 1389–1397). Venice, Italy.
  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708). Hawaii, USA.
  • Huang, Q., Zhou, K., You, S., & Neumann, U. (2018). Learning to prune filters in convolutional neural networks. In 2018 IEEE winter conference on applications of computer vision (WACV) (pp. 709–718). Nevada, USA.
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv:1806.08342.
  • Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710.
  • Li, H., Yue, X., Wang, Z., Chai, Z., Wang, W., Tomiyama, H., & Meng, L. (2022). Optimizing the deep neural networks by layer-wise refined pruning and the acceleration on FPGA. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/8039281
  • Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., & Liu, H. (2019). Expectation–maximization attention networks for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 9167–9176). Seoul, Korea.
  • Li, Z., Gan, Y., Liang, X., Yu, Y., Cheng, H., & Lin, L. (2016). LSTM-CF: Unifying context modeling and fusion with LSTMs for RGB-D scene labeling. In European conference on computer vision (pp. 541–557). Amsterdam, Netherlands.
  • Lin, D., Fidler, S., & Urtasun, R. (2013). Holistic scene understanding for 3D object detection with RGBD cameras. In Proceedings of the IEEE international conference on computer vision (pp. 1417–1424). Sydney, Australia.
  • Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., & Shao, L. (2020). HRank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1529–1538). Seattle, USA.
  • Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., & Doermann, D. (2019). Towards optimal structured cnn pruning via generative adversarial learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2790–2799). Long Beach, USA.
  • Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE international conference on computer vision (pp. 2736–2744). Venice, Italy.
  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440). Boston, USA.
  • Luo, J. H., Wu, J., & Lin, W. (2017). ThiNet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE international conference on computer vision (pp. 5058–5066). Venice, Italy.
  • Lyu, Y., Bai, L., & Huang, X. (2018). Chipnet: Real-time lidar processing for drivable region segmentation on an FPGA. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(5), 1769–1779. https://doi.org/10.1109/TCSI.8919
  • Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440.
  • Mukherjee, S., & Guddeti, R. M. R. (2014). A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision. In 2014 international conference on signal processing and communications (SPCOM) (pp. 1–6). Bangalore, India.
  • Park, S. J., Hong, K. S., & Lee, S. (2017). RDFNeT: RGB-D multi-level residual feature fusion for indoor semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 4980–4989). Venice, Italy.
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). Munich, Germany.
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  • Suau, X., Zappella, L., Palakkode, V., & Apostoloff, N. (2018). Principal filter analysis for guided network compression. arXiv preprint arXiv:1807.10585 2.
  • Sun, J. Y., Kim, S. W., Lee, S. W., Kim, Y. W., & Ko, S. J. (2019). Reverse and boundary attention network for road segmentation. In Proceedings of the IEEE international conference on computer vision workshops (pp. 0–0). Seoul, Korea.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9). Boston, USA.
  • Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., & Urtasun, R. (2018). MultiNet: Real-time joint semantic reasoning for autonomous driving. In 2018 IEEE intelligent vehicles symposium (IV) (pp. 1013–1020). Suzhou, China.
  • Tung, F., & Mori, G. (2018). CLIP-Q: Deep network compression learning by in-parallel pruning-quantization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7873–7882). Salt Lake, USA.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008). Long Beach, USA.
  • Wang, C., Bai, X., Wang, X., Liu, X., Zhou, J., Wu, X., Li, H., & Tao, D. (2020). Self-supervised multiscale adversarial regression network for stereo disparity estimation. IEEE Transactions on Cybernetics, 51(10), 4770–4783. https://doi.org/10.1109/TCYB.2020.2999492
  • Wang, C., Wang, X., Zhang, J., Zhang, L., Bai, X., Ning, X., Zhou, J., & Hancock, E. (2022). Uncertainty estimation for stereo matching based on evidential deep learning. Pattern Recognition, 124, Article ID 108498. https://doi.org/10.1016/j.patcog.2021.108498
  • Wang, D., Zhou, L., Zhang, X., Bai, X., & Zhou, J. (2018). Exploring linear relationship in feature map subspace for convnets compression. arXiv preprint arXiv:1803.05729.
  • Wang, H., Fan, R., Sun, Y., & Liu, M. (2021). Dynamic fusion module evolves drivable area and road anomaly detection: A benchmark and algorithms. IEEE Transactions on Cybernetics, 10750–10760. https://doi.org/10.1109/TCYB.2021.3064089
  • Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7794–7803). Boston, USA.
  • Xiong, S., Wu, G., Fan, X., Feng, X., Huang, Z., Cao, W., Zhou, X., Ding, S., Yu, J., Wang, L., & Shi, Z. (2021). MRI-based brain tumor segmentation using FPGA-accelerated neural network. BMC Bioinformatics, 22(1), 1–15. https://doi.org/10.1186/s12859-021-04347-6
  • Yamamoto, K., & Maeno, K. (2018). PCAS: Pruning channels with attention statistics for deep network compression. arXiv preprint arXiv:1806.05382.
  • Yan, C., Pang, G., Bai, X., Liu, C., Ning, X., Gu, L., & Zhou, J. (2021). Beyond triplet loss: Person re-identification with fine-grained difference-aware pairwise loss. IEEE Transactions on Multimedia, 24, 1665–1677. https://doi.org/10.1109/TMM.2021.3069562
  • Ye, J., Lu, X., Lin, Z., & Wang, J. Z. (2018). Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124.
  • Yu, R., Li, A., Chen, C. F., Lai, J. H., Morariu, V. I., Han, X., Gao, M., Lin, C. Y., & Davis, L. S. (2018). NISP: Pruning networks using neuron importance score propagation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9194–9203). Salt Lake, USA.
  • Zhang, J., Yang, T., Li, Q., Zhou, B., Yang, Y., Luo, G., & Shi, J. (2021). An FPGA-based neural network overlay for ADAS supporting multi-model and multi-mode. In 2021 IEEE international symposium on circuits and systems (ISCAS) (pp. 1–5). Daegu, Korea.
  • Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M., & Wang, Y. (2018). A systematic DNN weight pruning framework using alternating direction method of multipliers. In Proceedings of the European conference on computer vision (ECCV) (pp. 184–199). Munich, Germany.
  • Zhang, X., Yang, Y., Li, T., Zhang, Y., Wang, H., & Fujita, H. (2021). CMC: A consensus multi-view clustering model for predicting Alzheimer's disease progression. Computer Methods and Programs in Biomedicine, 199, Article ID 105895. https://doi.org/10.1016/j.cmpb.2020.105895
  • Zhou, L., Bai, X., Liu, X., Zhou, J., & Hancock, E. R. (2020). Learning binary code for fast nearest subspace search. Pattern Recognition, 98, Article ID 107040. https://doi.org/10.1016/j.patcog.2019.107040
  • Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., & Zhu, J. (2018). Discrimination-aware channel pruning for deep neural networks. Advances in Neural Information Processing Systems, 31, 875–886.
  • Zhuo, H., Qian, X., Fu, Y., Yang, H., & Xue, X. (2018). SCSP: Spectral clustering filter pruning with soft self-adaption manners. arXiv preprint arXiv:1806.05320.