733
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GASN: gamma distribution test for driver genes identification based on similarity networks

, , , ORCID Icon, &
Article: 2167937 | Received 22 Mar 2022, Accepted 05 Jan 2023, Published online: 28 Jan 2023

References

  • Acemel, R. D., Tena, J. J., Irastorza-Azcarate, I., Marlétaz, F., Gómez-Marín, C., & Gómez-Skarmeta, J. L. (2016). A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nature Genetics, 48(3), 336–341. https://doi.org/10.1038/ng.3497
  • Akdeli, N., Riemann, K., Westphal, J., Hess, J., Siffert, W., & Bachmann, H. S. (2014). A 3′ UTR polymorphism modulates mRNA stability of the oncogene and drug target Polo-like Kinase 1. Molecular Cancer, 13(1), 1–10. https://doi.org/10.1186/1476-4598-13-87
  • Al-Zaidy, S. A., Sahenk, Z., Rodino-Klapac, L. R., Kaspar, B., & Mendell, J. R. (2015). Follistatin gene therapy improves ambulation in becker muscular dystrophy. Journal of Neuromuscular Diseases, 2(3), 185–192. https://doi.org/10.3233/JND-150083
  • Anandanadarajah, N., Chu, C. H., & Loganantharaj, R. (2021). An integrated deep learning and dynamic programming method for predicting tumor suppressor genes, oncogenes, and fusion from PDB structures. Computers in Biology and Medicine, 133, Article 104323. https://doi.org/10.1016/j.compbiomed.2021.104323
  • Barber, T. D., Barber, M. C., Cloutier, T. E., & Friedman, T. B. (1999). PAX3 gene structure, alternative splicing and evolution. Gene, 237(2), 311–319. https://doi.org/10.1016/S0378-1119(99)00339-X
  • Bashashati, A., Haffari, G., Ding, J., Ha, G., Lui, K., Rosner, J., & Shah, S. P. (2012). DriverNet: Uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biology, 13(12), 1–14. https://doi.org/10.1186/gb-2012-13-12-r124
  • Bertrand, D., Chng, K. R., Sherbaf, F. G., Kiesel, A., Chia, B. K., Sia, Y. Y., & Nagarajan, N. (2015). Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Research, 43(7), e44-e44. https://doi.org/10.1093/nar/gku1393
  • Binder, J. X., Pletscher-Frankild, S., Tsafou, K., Stolte, C., O'Donoghue, S. I., Schneider, R., & Jensen, L. J. (2014). COMPARTMENTS: Unification and visualization of protein subcellular localization evidence. Database, 2014. https://doi.org/10.1093/database/bau012.
  • Chen, B., Shang, X., Li, M., Wang, J., & Wu, F. X. (2016). Identifying individual-cancer-related genes by rebalancing the training samples. IEEE Transactions on Nanobioscience, 15(4), 309–315. https://doi.org/10.1109/TNB.2016.2553119
  • Chen, X., Feng, H. Y., & Wang, J. L. (2022). Robust coal granularity estimation via deep neural network with an image enhancement layer. Connection Science, 34(1), 472–491. https://doi.org/10.1080/09540091.2021.2015290
  • Chen, Y., McGee, J., Chen, X., Doman, T. N., Gong, X., Zhang, Y., & Kouros-Mehr, H. (2014). Identification of druggable cancer driver genes amplified across TCGA datasets. PloS One, 9(5), Article e98293. https://doi.org/10.1371/journal.pone.0098293
  • Ciriello, G., Cerami, E., Sander, C., & Schultz, N. (2012). Mutual exclusivity analysis identifies oncogenic network modules. Genome Research, 22(2), 398–406. https://doi.org/10.1101/gr.125567.111
  • Cui, D., Ren, J., Shi, J., Feng, L., Wang, K., Zeng, T., & Gao, L. (2016). R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling. The International Journal of Biochemistry & Cell Biology, 73, 72–81. https://doi.org/10.1016/j.biocel.2016.02.007.
  • Dees, N. D., Zhang, Q., Kandoth, C., Wendl, M. C., Schierding, W., Koboldt, D. C., & Ding, L. (2012). MuSiC: Identifying mutational significance in cancer genomes. Genome Research, 22(8), 1589–1598. https://doi.org/10.1101/gr.134635.111
  • de Vries, P. H. (2020). Conditions for cognitive self-organisation implied by visual-word processing. Connection Science, 32(3), 292–332. https://doi.org/10.1080/09540091.2019.1682520
  • Fay, M. P., & Feuer, E. J. (1997). Confidence intervals for directly standardized rates: A method based on the gamma distribution. Statistics in Medicine, 16(7), 791–801. https://doi.org/10.1002/(SICI)1097-0258(19970415)16:7¡¿1.0.CO;2-J
  • Gnad, F., Baucom, A., Mukhyala, K., Manning, G., & Zhang, Z. (2013). Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genomics, 14(3), 1–13. https://doi.org/10.1186/1471-2164-14-S3-S7
  • Gonzalez-Perez, A., & Lopez-Bigas, N. (2012). Functional impact bias reveals cancer drivers. Nucleic Acids Research, 40(21), e169-e169. https://doi.org/10.1093/nar/gks743
  • Gu, H., Xu, X., Qin, P., & Wang, J. (2020). FI-net: Identification of cancer driver genes by using functional impact prediction neural network. Frontiers in Genetics, 11, Article 564839. https://doi.org/10.3389/fgene.2020.564839
  • Guo, W. F., Zhang, S. W., Liu, L. L., Liu, F., Shi, Q. Q., Zhang, L., & Chen, L. (2018). Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics (Oxford, England), 34(11), 1893–1903. https://doi.org/10.1093/bioinformatics/bty006
  • Han, Y., Yang, J., Qian, X., Cheng, W. C., Liu, S. H., Hua, X., & Lu, Y. (2019). DriverML: A machine learning algorithm for identifying driver genes in cancer sequencing studies. Nucleic Acids Research, 47(8), e45-e45. https://doi.org/10.1093/nar/gkz096
  • He, Z., Lin, Y., Wei, R., Liu, C., & Jiang, D. (2022). Repulsion and attraction in searching: A hybrid algorithm based on gravitational kernel and vital few for cancer driver gene prediction. Computers in Biology and Medicine, 151, 106236. https://doi.org/10.1016/j.compbiomed.2022.106236.
  • Heinemann, U., Illing, G., & Oschkinat, H. (2001). High-throughput three-dimensional protein structure determination. Current Opinion in Biotechnology, 12(4), 348–354. https://doi.org/10.1016/S0958-1669(00)00226-3
  • Horn, H., Lawrence, M. S., Chouinard, C. R., Shrestha, Y., Hu, J. X., Worstell, E., & Lage, K. (2018). NetSig: Network-based discovery from cancer genomes. Nature Methods, 15(1), 61–66. https://doi.org/10.1038/nmeth.4514
  • Hou, J. P., & Ma, J. (2014). DawnRank: Discovering personalized driver genes in cancer. Genome Medicine, 6(7), 1–16. https://doi.org/10.1186/s13073-014-0056-8
  • Hou, Y., Gao, B., Li, G., & Su, Z. (2018). MaxMIF: A new method for identifying cancer driver genes through effective data integration. Advanced Science, 5(9), Article 1800640. https://doi.org/10.1002/advs.v5.9
  • Huntley, R., Dimmer, E., Barrell, D., Binns, D., & Apweiler, R. (2009). The gene ontology annotation (goa) database. Nature Precedings, 10, 1–1. https://doi.org/10.1038/npre.2009.3154.1
  • Isik, Z., & Ercan, M. E. (2017). Integration of RNA-Seq and RPPA data for survival time prediction in cancer patients. Computers in Biology and Medicine, 89, 397–404. https://doi.org/10.1016/j.compbiomed.2017.08.028
  • Jiang, D., Lin, Y., Zhu, W., & He, Z. (2022). A parallel based evolutionary algorithm with primary-auxiliary knowledge. Information Sciences, 610, 1122–1142. https://doi.org/10.1016/j.ins.2022.08.016
  • Jiang, D., Tu, G., Jin, D., Wu, K., Liu, C., Zheng, L., & Zhou, T. (2021). A hybrid intelligent model for acute hypotensive episode prediction with large-scale data. Information Sciences, 546, 787–802. https://doi.org/10.1016/j.ins.2020.08.033
  • Joly, Y., Dove, E. S., Knoppers, B. M., Bobrow, M., & Chalmers, D. (2012). Data sharing in the post-genomic world: The experience of the international cancer genome consortium (ICGC) data access compliance office (DACO). PLoS Computational Biology, 8(7), Article e1002549. https://doi.org/10.1371/journal.pcbi.1002549
  • Khan, J., Wei, J. S., Saal, L. H., Ladanyi, M., & Meltzer, P. S. (2001). Classication and diagnostic prediction of cancers using gene expression proling and articial neural networks. Nature Medicine, 7(6), 673–679. https://doi.org/10.1038/89044
  • Kumar, R. D., Swamidass, S. J., & Bose, R. (2016). Unsupervised detection of cancer driver mutations with parsimony-guided learning. Nature Genetics, 48(10), 1288–1294. https://doi.org/10.1038/ng.3658
  • Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., & Getz, G. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499(7457), 214–218. https://doi.org/10.1038/nature12213
  • Le, N. Q. K., & Ho, Q. T. (2022). Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes. Methods (San Diego, Calif.), 204, 199–206. https://doi.org/10.1016/j.ymeth.2021.12.004
  • Le, N. Q. K., & Nguyen, B. P. (2019). Prediction of FMN binding sites in electron transport chains based on 2-D CNN and PSSM profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(6), 2189–2197. https://doi.org/10.1109/TCBB.2019.2932416
  • Leiserson, M. D., Vandin, F., Wu, H. T., Dobson, J. R., & Raphael, B. R. (2014). Pan-cancer identification of mutated pathways and protein complexes. Cancer Research, 74(19), 5324–5324. https://doi.org/10.1158/1538-7445.AM2014-5324
  • Lin, S., Song, X., Xu, Z., Zhang, X., Lin, Y., Zhang, R., & Wan, X. (2021). Moment invariants with data augmentation for tongue image segmentation. In 2021 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 988–993).
  • Liu, C., Wu, S., Jiang, D., Yu, Z., & Wong, H. S. (2022). View-aware collaborative learning for survival prediction and subgroup identification. IEEE Transactions on Biomedical Engineering, 70(1), 301–314. https://doi.org/10.1109/TBME.2022.3190050
  • Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A. D., & Cope, L. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 173(2), 400–416. https://doi.org/10.1016/j.cell.2018.02.052
  • Luo, P., Ding, Y., Lei, X., & Wu, F. X. (2019). deepDriver: Predicting cancer driver genes based on somatic mutations using deep convolutional neural networks. Frontiers in Genetics, 10, 13. https://doi.org/10.3389/fgene.2019.00013
  • Mai, G., Hong, Y., Fu, S., Lin, Y., Hao, Z., Huang, H., & Zhu, Y. (2020). Optimization of Lennard-Jones clusters by particle swarm optimization with quasi-physical strategy. Swarm and Evolutionary Computation, 57, Article 100710. https://doi.org/10.1016/j.swevo.2020.100710
  • Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A., & López-Bigas, N. (2016). OncodriveFML: A general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biology, 17(1), 1–13. https://doi.org/10.1186/s13059-016-0994-0
  • Porta-Pardo, E., & Godzik, A. (2014). e-Driver: A novel method to identify protein regions driving cancer. Bioinformatics (Oxford, England), 30(21), 3109–3114. https://doi.org/10.1093/bioinformaticsbtu499
  • Rahimi, M., Teimourpour, B., & Marashi, S. A. (2019). Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach. Computers in Biology and Medicine, 114, Article 103362. https://doi.org/10.1016/j.compbiomed.2019.103362
  • Reimand, J., & Bader, G. D. (2013). Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Molecular Systems Biology, 9(1), 637. https://doi.org/10.1038/msb.2012.68
  • Repana, D., Nulsen, J., Dressler, L., Bortolomeazzi, M., Venkata, S. K., Tourna, A., & Ciccarelli, F. D. (2019). The network of cancer genes (NCG): A comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biology, 20(1), 1–12. https://doi.org/10.1186/s13059-018-1612-0
  • Reyna, M. A., Leiserson, M. D., & Raphael, B. J. (2018). Hierarchical HotNet: Identifying hierarchies of altered subnetworks. Bioinformatics (Oxford, England), 34(17), i972–i980. https://doi.org/10.1093/bioinformatics/bty613
  • Sondka, Z., Bamford, S., Cole, C. G., Ward, S. A., Dunham, I., & Forbes, S. A. (2018). The COSMIC cancer gene census: Describing genetic dysfunction across all human cancers. Nature Reviews Cancer, 18(11), 696–705. https://doi.org/10.1038/s41568-018-0060-1
  • Tamborero, D., Gonzalez-Perez, A., & Lopez-Bigas, N. (2013). OncodriveCLUST: Exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics (Oxford, England), 29(18), 2238–2244. https://doi.org/10.1093/bioinformatics/btt395
  • Vandin, F., Upfal, E., & Raphael, B. J. (2012). De novo discovery of mutated driver pathways in cancer. Genome Research, 22(2), 375–385. https://doi.org/10.1101/gr.120477.111
  • Wang, X., Wang, C., Yan, G., Kang, Y., Sun, G., Wang, S., & Zhao, Y. (2020). BAP18 is involved in upregulation of CCND1/2 transcription to promote cell growth in oral squamous cell carcinoma. EBioMedicine, 53, Article 102685. https://doi.org/10.1016/j.ebiom.2020.102685
  • Wang, Z., Ng, K. S., Chen, T., Kim, T. B., Wang, F., Shaw, K., & Chen, K. (2018). Cancer driver mutation prediction through Bayesian integration of multi-omic data. PloS One, 13(5), Article e0196939. https://doi.org/10.1371/journal.pone.0196939
  • Wendl, M. C., Wallis, J. W., Lin, L., Kandoth, C., Mardis, E. R., Wilson, R. K., & Ding, L. (2011). PathScan: A tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics (Oxford, England), 27(12), 1595–1602. https://doi.org/10.1093/bioinformatics/btr193
  • Wyckoff, G. J., Malcom, C. M., Vallender, E. J., & Lahn, B. T. (2005). A highly unexpected strong correlation between fixation probability of nonsynonymous mutations and mutation rate. Trends in Genetics, 21(7), 381–385. https://doi.org/10.1016/j.tig.2005.05.005
  • Xie, L., Zhang, Y., & Wu, C. L. (2019). Microphthalmia family of transcription factors associated renal cell carcinoma. Asian Journal of Urology, 6(4), 312–320. https://doi.org/10.1016/j.ajur.2019.04.003
  • Xing, H., Kembel, S. W., & Makarenkov, V. (2020). Transfer index, NetUniFrac and some useful shortest path-based distances for community analysis in sequence similarity networks. Bioinformatics (Oxford, England), 36(9), 2740–2749. https://doi.org/10.1093/bioinformatics/btaa043
  • Zhang, J., Wu, L. Y., Zhang, X. S., & Zhang, S. (2014). Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics, 15(1), 1–14. https://doi.org/10.1186/1471-2105-15-S10-P1
  • Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., & Kinzler, K. W. (1997). Gene expression profiles in normal and cancer cells. Science (New York, N.Y.), 276(5316), 1268–1272. https://doi.org/10.1126/science.276.5316.1268
  • Zhao, J., Zhang, S., Wu, L. Y., & Zhang, X. S. (2012). Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics (Oxford, England), 28(22), 2940–2947. https://doi.org/10.1093/bioinformatics/bts564